Dump功能调试

查看源文件

概述

为了对训练过程进行分析,用户需要感知训练过程中算子的输入和输出数据。

  • 对于静态图模式,MindSpore提供了Dump功能,用来将模型训练中的图以及算子的输入输出数据保存到磁盘文件。

  • 对于动态图模式,MindSpore提供了Python原生执行能力,用户可以在网络脚本运行过程中查看记录相应的输入输出。

本文针对静态图模式,介绍如何基于Dump功能对网络数据进行分析对比。

调试过程

使用Dump来帮助调试分为两个步骤:1、数据准备;2、数据分析。

数据准备

数据准备阶段使用同步Dump或异步Dump来生成Dump数据。使用方法详见同步Dump操作步骤异步Dump操作步骤

在准备数据时,您可以参考以下最佳实践:

  1. 设置iteration参数,仅保存出现问题的迭代和前一个迭代这两个迭代的数据。例如,要分析的问题会在第10个迭代(从1开始数)出现,则可以这样设置:"iteration": "8|9"。请注意iteration参数从0开始计算迭代数。保存上述两个迭代的数据能够支撑大多数场景的问题分析。

  2. 在出现问题的迭代执行完毕后,建议您通过run_context.request_stop()等方法提前结束训练。

数据分析

如果用户已经安装了MindInsight, 可以使用MindInsight的离线调试器来分析。离线调试器的使用方法详见使用离线调试器

如果没有安装MindInsight,需要通过以下步骤来分析数据。

  1. 从脚本找到对应的算子

    使用Dump功能将自动生成最终执行图的IR文件(IR文件中包含了算子全名,和算子在计算图中输入和输出的依赖,也包含从算子到相应脚本代码的Trace信息),IR文件可以用vi命令查看,Dump功能的配置见同步Dump操作步骤异步Dump操作步骤,Dump输出的目录结构见同步Dump数据对象目录异步Dump数据对象目录。然后通过图文件找到脚本中代码对应的算子,参考同步Dump数据分析样例异步Dump数据分析样例

  2. 从算子到Dump数据

    在了解脚本和算子的映射关系后,可以确定想要分析的算子名称,从而找到算子对应的dump文件,参考同步Dump数据对象目录异步Dump数据对象目录

  3. 分析Dump数据

    通过解析Dump数据,可以与其他第三方框架进行对比。同步Dump数据格式参考同步Dump数据文件介绍,异步Dump数据格式参考异步Dump数据文件介绍

适用场景

  1. 静态图算子结果分析。

    通过Dump功能获得的IR图,可以了解脚本代码与执行算子的映射关系(详情见MindSpore IR简介)。结合执行算子的输入和输出数据,可以分析训练过程中可能存在的溢出、梯度爆炸与消失等问题,反向跟踪到脚本中可能存在问题的代码。

  2. 特征图分析。

    通过获取图层的输出数据,分析特征图的信息。

  3. 模型迁移。

    在将模型从第三方框架(TensorFlow、PyTorch)迁移到MindSpore的场景中,通过比对相同位置算子的输出数据,分析第三方框架和MindSpore对于同一模型的训练结果是否足够接近,来定位模型的精度问题。

Dump功能说明

MindSpore提供了同步Dump与异步Dump两种模式:

  • 同步Dump的机制是在网络训练过程中每个step执行结束后, Host侧发起Dump动作,从Device上拷贝算子地址里面的数据到Host,并保存文件。同步Dump会默认关闭算子间的内存复用,避免读到脏数据。

  • 异步Dump是专门针对Ascend整图下沉而开发的功能,可以一边执行算子一边dump数据,一个算子执行结束后立即dump数据,因此开启内存复用也可以生成正确的数据,但是相应的网络训练的速度会较慢。

不同模式所需要的配置文件和dump出来的数据格式不同:

  • 在Ascend上开启同步Dump的时候,待Dump的算子会自动关闭内存复用。

  • 同步Dump目前支持Ascend、GPU和CPU上的图模式,暂不支持PyNative模式。

  • 异步Dump仅支持Ascend上的图模式,不支持PyNative模式。开启异步Dump的时候不会关闭内存复用。

  • 默认使用用异步Dump模式,如果要使用同步Dump模式,需要在配置文件中设置”e2e_dump_settings”。

  • Dump暂不支持异构训练,如果在异构训练场景启用Dump,生成的Dump数据对象目录可能不符合预期的目录结构。

同步Dump

同步Dump操作步骤

  1. 创建json格式的配置文件,JSON文件的名称和位置可以自定义设置。

    {
        "common_dump_settings": {
            "dump_mode": 0,
            "path": "/absolute_path",
            "net_name": "ResNet50",
            "iteration": "0|5-8|100-120",
            "saved_data": "tensor",
            "input_output": 0,
            "kernels": ["Default/Conv-op12"],
            "support_device": [0,1,2,3,4,5,6,7]
        },
        "e2e_dump_settings": {
            "enable": true,
            "trans_flag": true
        }
    }
    
    • dump_mode:设置成0,表示Dump出该网络中的所有算子数据;设置成1,表示Dump"kernels"里面指定的算子数据。

    • path:Dump保存数据的绝对路径。

    • net_name:自定义的网络名称,例如:”ResNet50”。

    • iteration:指定需要Dump数据的迭代。类型为str,用“|”分离要保存的不同区间的step的数据。如”0|5-8|100-120”表示Dump第1个,第6个到第9个, 第101个到第121个step的数据。指定“all”,表示Dump所有迭代的数据。

    • saved_data: 指定Dump的数据。类型为str,取值成”tensor”,表示Dump出完整张量数据;取值成”statistic”,表示只Dump张量的统计信息;取值”full”代表两种都要。同步Dump统计信息现只支持GPU场景,CPU或Ascend场景若选”statistic”或”full”便会错误退出。默认取值为”tensor”。

    • input_output:设置成0,表示Dump出算子的输入和算子的输出;设置成1,表示Dump出算子的输入;设置成2,表示Dump出算子的输出。

    • kernels:算子的名称列表。开启IR保存开关set_context(save_graphs=True)并执行用例,从生成的IR文件trace_code_graph_{graph_id}中获取算子名称。详细说明可以参照教程:如何保存IR。 需要注意的是,是否设置set_context(save_graphs=True)可能会导致同一个算子的id不同,所以在Dump指定算子时要在获取算子名称之后保持这一项设置不变。或者也可以在Dump保存的ms_output_trace_code_graph_{graph_id}.ir文件中获取算子名称,参考同步Dump数据对象目录

    • support_device:支持的设备,默认设置成0到7即可;在分布式训练场景下,需要dump个别设备上的数据,可以只在support_device中指定需要Dump的设备Id。该配置参数在CPU上无效,因为CPU下没有device这个概念,但是在json格式的配置文件中仍需保留该字段。

    • enable:设置成true,表示开启同步Dump;设置成false时,在Ascend上会使用异步Dump,在GPU上仍然使用同步Dump。

    • trans_flag:开启格式转换。将设备上的数据格式转换成NCHW格式。若为True,则数据会以Host侧的4D格式(NCHW)格式保存;若为False,则保留Device侧的数据格式。该配置参数在CPU上无效,因为CPU上没有format转换,但是在json格式的配置文件中仍需保留该字段。

  2. 设置Dump环境变量。

    指定Dump的json配置文件。

    export MINDSPORE_DUMP_CONFIG=${xxx}
    

    其中”xxx”为配置文件的绝对路径,如:

    export MINDSPORE_DUMP_CONFIG=/path/to/data_dump.json
    

    如果Dump配置文件没有设置path字段或者设置为空字符串,还需要配置环境变量MS_DIAGNOSTIC_DATA_PATH

    export MS_DIAGNOSTIC_DATA_PATH=${yyy}
    

    则“$MS_DIAGNOSTIC_DATA_PATH/debug_dump”就会被当做path的值。若Dump配置文件中设置了path字段,则仍以该字段的实际取值为准。

    注意:

    • 在网络脚本执行前,设置好环境变量;网络脚本执行过程中设置将会不生效。

    • 在分布式场景下,Dump环境变量需要在调用mindspore.communication.init之前配置。

  3. 启动网络训练脚本。

    训练启动后,若正确配置了MINDSPORE_DUMP_CONFIG环境变量,则会读取配置文件的内容,并按照Dump配置中指定的数据保存路径保存算子数据。 同步模式下,GPU环境如果要Dump数据,必须采用非数据下沉模式(设置model.trainDatasetHelper中的dataset_sink_mode参数为False),以保证可以获取每个step的Dump数据。 若脚本中都不调用model.trainDatasetHelper,则默认为非数据下沉模式。使用Dump功能将自动生成最终执行图的IR文件。

    可以在训练脚本中设置set_context(reserve_class_name_in_scope=False),避免Dump文件名称过长导致Dump数据文件生成失败。

  4. 通过numpy.load读取和解析同步Dump数据,参考同步Dump数据文件介绍

同步Dump数据对象目录

启动训练后,同步Dump保存的数据对象包括最终执行图(ms_output_trace_code_graph_{graph_id}.ir文件)以及图中算子的输入和输出数据,数据目录结构如下所示:

{path}/
    - rank_{rank_id}/
        - .dump_metadata/
        - {net_name}/
            - {graph_id}/
                - {iteration_id}/
                    statistic.csv
                    {op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy
                - constants/
                    Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy
            ...
        - graphs/
            ms_output_trace_code_graph_{graph_id}.pb
            ms_output_trace_code_graph_{graph_id}.ir
        - execution_order/
            ms_execution_order_graph_{graph_id}.csv
            ms_global_execution_order_graph_{graph_id}.csv
  • pathdata_dump.json配置文件中设置的绝对路径。

  • rank_id: 逻辑卡号。

  • net_namedata_dump.json配置文件中设置的网络名称。

  • graph_id:训练的图标号。

  • iteration_id:训练的轮次。

  • op_type:算子类型。

  • op_name:算子名称。

  • task_id:任务标号。

  • stream_id:流标号。

  • timestamp:时间戳。

  • input_output_index:输入或输出标号,例如output.0表示该文件是该算子的第1个输出Tensor的数据。

  • slot:slot标号。

  • format: 数据格式。

  • data_id: 常量数据标号。

对于多图网络,由于存在控制流,某些子图可能不会被执行,Dump只保存执行过的节点,所以graphs目录下.pb文件名中的{graph_id}并不一定在{net_name}下存在对应的{graph_id}目录。

只当saved_data为”statistic”或者”full”时,才会生成statistic.csv,当saved_data为”tensor”或者”full”时,才会生成{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy命名的完整张量信息。

同步Dump数据文件介绍

同步Dump生成的数据文件是后缀名为.npy的文件,文件命名格式为:

{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy

同步Dump生成的常量数据文件与其他数据文件格式相同,而所有常量数据的{op_type},{task_id},{stream_id},{input_output_index},{slot},{format}不变。注意,非Tensor类型数据不会被生成数据文件。

Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy

可以用Numpy的numpy.load接口读取数据。

同步Dump生成的统计数据文件名为statistic.csv,此文件存有相同目录下所有落盘张量(文件名为{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy)的统计信息。每个张量一行,每行有张量的 Op Type,Op Name,Task ID,Stream ID,Timestamp,IO,Slot,Data Size,Data Type,Shape,Max Value,Min Value,Avg Value,Count,Negative Zero Count,Positive Zero Count,NaN Count,Negative Inf Count,Positive Inf Count,Zero Count。注意,如果用Excel来打开此文件,数据可能无法正确显示。请用vicat等命令查看,或者使用Excel自文本导入csv查看。

同步Dump生成的最终执行图文件后缀名分别为.pb.ir,文件命名格式为:

ms_output_trace_code_graph_{graph_id}.pb
ms_output_trace_code_graph_{graph_id}.ir

其中以.ir为后缀的文件可以通过vi命令打开查看。

同步Dump生成的节点执行序文件后缀名为.csv,文件命名格式为:

ms_execution_order_graph_{graph_id}.csv

图执行历史文件的后缀为.csv,文件名格式为:

ms_global_execution_order_graph_{graph_id}.csv

此文件记录该图在训练过程中的执行轮次历史。图编译过程中,一张根图可能产生多张子图,但子图与根图具有相同的执行轮次历史。故与图执行序文件不同,此处仅保存根图的图执行历史文件。

.dump_metadata记录了训练的原信息,其中data_dump.json保存了用户设置的dump配置。

同步Dump数据分析样例

为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套完整样例脚本 ,同步Dump只需要执行 bash run_sync_dump.sh

在通过Dump功能将脚本对应的图保存到磁盘上后,会产生最终执行图文件ms_output_trace_code_graph_{graph_id}.ir。该文件中保存了对应的图中每个算子的堆栈信息,记录了算子对应的生成脚本。

AlexNet脚本为例 :

...
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid"):
    weight = weight_variable()
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=kernel_size, stride=stride, padding=padding,
                     weight_init=weight, has_bias=False, pad_mode=pad_mode)


def fc_with_initialize(input_channels, out_channels):
    weight = weight_variable()
    bias = weight_variable()
    return nn.Dense(input_channels, out_channels, weight, bias)


def weight_variable():
    return TruncatedNormal(0.02)


class AlexNet(nn.Cell):
    """
    Alexnet
    """

    def __init__(self, num_classes=10, channel=3):
        super(AlexNet, self).__init__()
        self.conv1 = conv(channel, 96, 11, stride=4)
        self.conv2 = conv(96, 256, 5, pad_mode="same")
        self.conv3 = conv(256, 384, 3, pad_mode="same")
        self.conv4 = conv(384, 384, 3, pad_mode="same")
        self.conv5 = conv(384, 256, 3, pad_mode="same")
        self.relu = nn.ReLU()
        self.max_pool2d = ops.MaxPool(kernel_size=3, strides=2)
        self.flatten = nn.Flatten()
        self.fc1 = fc_with_initialize(6 * 6 * 256, 4096)
        self.fc2 = fc_with_initialize(4096, 4096)
        self.fc3 = fc_with_initialize(4096, num_classes)

    def construct(self, x):
        """
        The construct function.

        Args:
           x(int): Input of the network.

        Returns:
           Tensor, the output of the network.
        """
        x = self.conv1(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv3(x)
        x = self.relu(x)
        x = self.conv4(x)
        x = self.relu(x)
        x = self.conv5(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x
...

如果用户想查看脚本中第175行的代码:

x = self.conv3(x)

执行完训练网络后,可以从最终执行图(ms_output_trace_code_graph_{graph_id}.ir文件)中查找到该行代码所对应的多个算子信息,例如Conv2D-op12对应的文件内容如下所示:

  %20(equivoutput) = Conv2D(%17, %19) {instance name: conv2d} primitive_attrs: {IsFeatureMapInputList: (0), kernel_size: (3, 3), mode: 1, out_channel: 384, input_names: [
x, w],    pri_format: NC1HWC0, pad: (0, 0, 0, 0), visited: true, pad_mod: same, format: NCHW,  pad_list: (1, 1, 1, 1), precision_flag: reduce, groups: 1, output_used_num:
(1), stream_id:     0, stride: (1, 1, 1, 1), group: 1, dilation: (1, 1, 1, 1), output_names: [output], IsFeatureMapOutput: true, ms_function_graph: true}
       : (<Tensor[Float32], (32, 256, 13, 13)>, <Tensor[Float32], (384, 256, 3, 3)>) -> (<Tensor[Float32], (32, 384, 13, 13)>)
       : (<Float16xNC1HWC0[const vector][32, 16, 13, 13, 16]>, <Float16xFracZ[const vector][144, 24, 16, 16]>) -> (<Float32xNC1HWC0[const vector][32, 24, 13, 13, 16]>)
       : full_name_with_scope: (Default/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op12)
       ...
       # In file ./tain_alexnet.py(175)/        x = self.conv3(x)/
       ...

以上所示文件内容的各行所表示的含义如下:

  • 算子在Host侧(第一行)和Device侧(第二行,有些算子可能不存在)的输入输出情况。从执行图可知,该算子有两个输入(箭头左侧),一个输出(箭头右侧)。

       : (<Tensor[Float32], (32, 256, 13, 13)>, <Tensor[Float32], (384, 256, 3, 3)>) -> (<Tensor[Float32], (32, 384, 13, 13)>)
       : (<Float16xNC1HWC0[const vector][32, 16, 13, 13, 16]>, <Float16xFracZ[const vector][144, 24, 16, 16]>) -> (<Float32xNC1HWC0[const vector][32, 24, 13, 13, 16]>)
    
  • 算子名称。从执行图可知,该算子在最终执行图中的完整名称为Default/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op12

    : (Default/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op12)
    
  • 算子对应的训练脚本代码。通过搜索要查询的训练脚本代码,可以找到多个匹配的算子。

    # In file {Absolute path of model_zoo}/official/cv/alexnet/src/alexnet.py(175)/        x = self.conv3(x)/
    

通过算子名称和输入输出信息,可以查找到唯一对应的Tensor数据文件。比如,若要查看Conv2D-op12算子的第1个输出数据对应的Dump文件,可获取以下信息:

  • operator_nameConv2D-op12

  • input_output_indexoutput.0表示该文件是该算子的第1个输出Tensor的数据。

  • slot:0,该算子的输出只有一个slot。

在Dump保存的数据对象文件目录下搜索到相应的文件名: Conv2D.Conv2D-op12.0.0.1623124369613540.output.0.DefaultFormat.npy

还原数据的时候,通过执行:

import numpy
numpy.load("Conv2D.Conv2D-op12.0.0.1623124369613540.output.0.DefaultFormat.npy")

生成numpy.array数据。

异步Dump

大型网络(如Bert Large)使用同步Dump时会导致内存溢出,MindSpore通过异步Dump提供了大型网络的调试能力。

异步Dump操作步骤

  1. 创建配置文件data_dump.json

    JSON文件的名称和位置可以自定义设置。

    {
        "common_dump_settings": {
            "dump_mode": 0,
            "path": "/absolute_path",
            "net_name": "ResNet50",
            "iteration": "0|5-8|100-120",
            "saved_data": "tensor",
            "input_output": 0,
            "kernels": ["Default/Conv-op12"],
            "support_device": [0,1,2,3,4,5,6,7],
            "op_debug_mode": 0,
            "file_format": "npy"
        }
    }
    
    • dump_mode:设置成0,表示Dump出该网络中的所有算子数据;设置成1,表示Dump"kernels"里面指定的算子数据;设置成2,表示Dump脚本中通过set_dump指定的算子数据,set_dump的使用详见mindspore.set_dump

    • path:Dump保存数据的绝对路径。

    • net_name:自定义的网络名称,例如:”ResNet50”。

    • iteration:指定需要Dump的迭代。类型为str,用“|”分离要保存的不同区间的step的数据。如”0|5-8|100-120”表示Dump第1个,第6个到第9个, 第101个到第121个step的数据。指定“all”,表示Dump所有迭代的数据。

    • saved_data: 指定Dump的数据。类型为str,取值成”tensor”,表示Dump出完整张量数据;取值成”statistic”,表示只Dump张量的统计信息;取值”full”代表两种都要。异步Dump统计信息只有在file_format设置为npy时可以成功,若在file_format设置为bin时选”statistic”或”full”便会错误退出。默认取值为”tensor”。

    • input_output:设置成0,表示Dump出算子的输入和算子的输出;设置成1,表示Dump出算子的输入;设置成2,表示Dump出算子的输出。

    • kernels:算子的名称列表。开启IR保存开关set_context(save_graphs=True)并执行用例,从生成的trace_code_graph_{graph_id}IR文件中获取算子名称。kernels仅支持TBE算子、AiCPU算子、通信算子,若设置成通信算子的名称,将会Dump出通信算子的输入算子的数据。详细说明可以参照教程:如何保存IR。 需要注意的是,是否设置set_context(save_graphs=True)可能会导致同一个算子的id不同,所以在Dump指定算子时要在获取算子名称之后保持这一项设置不变。或者也可以在Dump保存的ms_output_trace_code_graph_{graph_id}.ir文件中获取算子名称,参考异步Dump数据对象目录

    • support_device:支持的设备,默认设置成0到7即可;在分布式训练场景下,需要dump个别设备上的数据,可以只在support_device中指定需要Dump的设备Id。

    • op_debug_mode:该属性用于算子溢出调试,设置成0,表示不开启溢出;设置成1,表示开启AiCore溢出检测;设置成2,表示开启Atomic溢出检测;设置成3,表示开启全部溢出检测功能。在Dump数据的时候请设置成0,若设置成其他值,则只会Dump溢出算子的数据。

    • file_format: dump数据的文件类型,只支持npybin两种取值。设置成npy,则dump出的算子张量数据将为host侧格式的npy文件;设置成bin,则dump出的数据将为device侧格式的protobuf文件,需要借助转换工具进行处理,详细步骤请参考异步Dump数据分析样例。默认取值为bin

  2. 设置数据Dump的环境变量。

    export MINDSPORE_DUMP_CONFIG=${Absolute path of data_dump.json}
    

    如果Dump配置文件没有设置path字段或者设置为空字符串,还需要配置环境变量MS_DIAGNOSTIC_DATA_PATH

    export MS_DIAGNOSTIC_DATA_PATH=${yyy}
    

    则“$MS_DIAGNOSTIC_DATA_PATH/debug_dump”就会被当做path的值。若Dump配置文件中设置了path字段,则仍以该字段的实际取值为准。

    • 在网络脚本执行前,设置好环境变量;网络脚本执行过程中设置将会不生效。

    • 在分布式场景下,Dump环境变量需要在调用mindspore.communication.init之前配置。

  3. 执行用例Dump数据。

    可以在训练脚本中设置set_context(reserve_class_name_in_scope=False),避免Dump文件名称过长导致Dump数据文件生成失败。

  4. 参考异步Dump数据分析样例解析Dump数据文件。

注意:

  • 若需要dump全量或部分算子,则可以修改json配置文件中的dump_mode选项为0或1。

  • 使用Dump功能将自动生成最终执行图的IR文件。

异步Dump数据对象目录

若配置文件中file_format值设置为npy,则数据对象目录参考同步Dump数据对象目录

若未配置file_format值或file_format值为bin,数据对象目录为以下结构。

异步Dump保存的数据对象包括了最终执行图(ms_output_trace_code_graph_{graph_id}.ir文件)以及图中算子的输入和输出数据,目录结构如下所示:

{path}/
    - rank_{rank_id}/
        - .dump_metadata/
        - {net_name}/
            - {graph_id}/
                - {iteration_id}/
                    statistic.csv
                    {op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}
                    mapping.csv
                - constants/
                    Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy
            ...
        - graphs/
            ms_output_trace_code_graph_{graph_id}.pb
            ms_output_trace_code_graph_{graph_id}.ir
        - execution_order/
            ms_execution_order_graph_{graph_id}.csv
            ms_global_execution_order_graph_{graph_id}.csv
  • pathdata_dump.json配置文件中设置的绝对路径。

  • rank_id: 逻辑卡号。

  • net_namedata_dump.json配置文件中设置的网络名称。

  • graph_id:训练的图标号。

  • iteration_id:训练的轮次。

  • op_type:算子类型。

  • op_name:算子名称。

  • task_id:任务标号。

  • stream_id:流标号。

  • timestamp:时间戳。

  • data_id: 常量数据标号。

由于存在控制流,某些子图可能不会被执行,Dump只保存执行过的节点,所以graphs目录下.pb文件名中的{graph_id}并不一定在{net_name}下存在对应的{graph_id}目录。

对于多图网络,例如动态shape的场景,每张卡上所有计算图的轮次统一计数。

如果按命名规则定义的张量文件名称长度超过了OS文件名称长度限制(一般是255个字符),则会将该张量文件重命名为一串随机数字,映射关系会保存在同目录下的“mapping.csv”。

异步Dump数据文件介绍

若配置文件中file_format值设置为npy,则数据文件介绍参考同步Dump数据文件介绍

若未配置file_format值或file_format值为bin,启动训练后,异步Dump生成的原始数据文件是protobuf格式的文件,需要用到海思Run包中自带的数据解析工具进行解析,详见如何查看dump数据文件

数据在Device侧的格式可能和Host侧计算图中的定义不同,异步Dump的数据格式为Device侧格式,如果想要转为Host侧格式,可以参考如何进行dump数据文件Format转换

异步Dump生成的数据文件是bin文件时,文件命名格式为:

{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}

以AlexNet网络的Conv2D-op12为例:Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802,其中Conv2D{op_type}Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12{op_name}2{task_id}7{stream_id}161243956333802{timestamp}

如果op_typeop_name中出现了“.”、“/”、“\”、空格时,会转换为下划线表示。

Dump生成的原始数据文件也可以使用MindInsight的数据解析工具DumpParser解析,DumpParser的使用方式详见DumpParser介绍 。MindInsight解析出来的数据格式与同步dump的数据格式完全相同。

若配置file_format值为npy,则启用异步dump生成的数据文件命名规则与同步Dump相同,可以参考同步Dump数据文件介绍

选项saved_data只有在file_format为”npy”的时候生效。如saved_data是”statistic”或者”full”。张量统计数据会落盘到statistic.csv。如saved_data是”tensor”或者”full”完整张量数据会落盘到{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npystatistic.csv的格式与同步Dump相同,可以参考同步Dump数据文件介绍

异步Dump生成的常量数据文件,最终执行图文件和执行序文件命名规则与同步Dump相同,可以参考同步Dump数据文件介绍

异步Dump数据分析样例

为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套完整样例脚本 ,异步Dump执行 bash run_async_dump.sh 即可。用户可以自行下载体验。

通过异步Dump的功能,获取到算子异步Dump生成的数据文件。如果异步Dump配置文件中设置的file_format为”npy”,可以跳过以下步骤中的1、2,如果没有设置file_format,或者设置为”bin”,需要先转换成.npy格式的文件。

  1. 使用run包中提供的msaccucmp.py解析Dump出来的文件。不同的环境上msaccucmp.py文件所在的路径可能不同,可以通过find命令进行查找:

    find ${run_path} -name "msaccucmp.py"
    
    • run_path:run包的安装路径。

  2. 找到msaccucmp.py后,到/absolute_path目录下,运行如下命令解析Dump数据:

    python ${The absolute path of msaccucmp.py} convert -d {file path of dump} -out {file path of output}
    

    {file path of dump} 可以是单个.bin文件的路径,也可以是包含.bin文件的文件夹路径。

    若需要转换数据格式,可参考使用说明链接https://support.huawei.com/enterprise/zh/doc/EDOC1100234052/b04fcd04

    如Dump生成的数据文件为:

    Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802
    

    则执行:

    python3.7.5 msaccucmp.py convert -d /path/to/Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802 -out ./output -f NCHW -t npy
    

    则可以在./output下生成该算子的所有输入输出数据。每个数据以.npy后缀的文件保存,数据格式为NCHW。生成结果如下:

    Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.0.32x256x13x13.npy
    Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.1.384x256x3x3.npy
    Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.output.0.32x384x13x13.npy
    

    在文件名的末尾可以看到该文件是算子的第几个输入或输出,以及数据的维度信息。例如,通过第一个.npy文件名

    Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.0.32x256x13x13.npy
    

    可知该文件是算子的第0个输入,数据的维度信息是32x256x13x13

  3. 通过numpy.load("file_name")可以读取到对应数据。例:

    import numpy
    numpy.load("Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.0.32x256x13x13.npy")