Introduction || Quick Start || Tensor || Data Loading and Processing || Model || Autograd || Train || Save and Load || Accelerating with Static Graphs || Mixed Precision
Tensor
Tensor is a multilinear function that can be used to represent linear relationships between vectors, scalars, and other tensors. The basic examples of these linear relations are the inner product, the outer product, the linear map, and the Cartesian product. In the \(n\) dimensional space, its coordinates have \(n^{r}\) components. Each component is a function of coordinates, and these components are also linearly transformed according to certain rules when the coordinates are transformed. \(r\) is called the rank or order of this tensor (not related to the rank or order of the matrix).
A tensor is a special data structure that is similar to arrays and matrices. Tensor is the basic data structure in MindSpore network operations. This tutorial describes the attributes and usage of tensors and sparse tensors.
import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor
Creating a Tensor
There are multiple methods for creating tensors. When building a tensor, you can pass the Tensor
, float
, int
, bool
, tuple
, list
, and numpy.ndarray
types.
Generating a tensor based on data
You can create a tensor based on data. The data type can be set or automatically inferred by the framework.
data = [1, 0, 1, 0] x_data = Tensor(data) print(x_data, x_data.shape, x_data.dtype)
[1 0 1 0] (4,) Int4
Generating a tensor from the NumPy array
You can create a tensor from the NumPy array.
np_array = np.array(data) x_np = Tensor(np_array) print(x_np, x_np.shape, x_np.dtype)
[1 0 1 0] (4,) Int4
Generating a tensor by using init
When
init
is used to initialize a tensor, theinit
,shape
, anddtype
parameters can be transferred.init
: supports the subclass of initializer. For example, One() and Normal() below.shape
: supportslist
,tuple
, andint
.dtype
: supports mindspore.dtype.
from mindspore.common.initializer import One, Normal # Initialize a tensor with ones tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One()) # Initialize a tensor from normal distribution tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal()) print("tensor1:\n", tensor1) print("tensor2:\n", tensor2)
tensor1: [[1. 1.] [1. 1.]] tensor2: [[-0.00063482 -0.00916224] [ 0.01324238 -0.0171206 ]]
The
init
is used for delayed initialization in parallel mode. Usually, it is not recommended to useinit
interface to initialize parameters.Inheriting attributes of another tensor to form a new tensor
from mindspore import ops x_ones = ops.ones_like(x_data) print(f"Ones Tensor: \n {x_ones} \n") x_zeros = ops.zeros_like(x_data) print(f"Zeros Tensor: \n {x_zeros} \n")
Ones Tensor: [1 1 1 1] Zeros Tensor: [0 0 0 0]
Tensor Attributes
Tensor attributes include shape, data type, transposed tensor, item size, number of bytes occupied, dimension, size of elements, and stride per dimension.
shape: the shape of
Tensor
, a tuple.dtype: the dtype of
Tensor
, a data type of MindSpore.itemsize: the number of bytes occupied by each element in
Tensor
, which is an integer.nbytes: the total number of bytes occupied by
Tensor
, which is an integer.ndim: rank of
Tensor
, that is, len(tensor.shape), which is an integer.size: the number of all elements in
Tensor
, which is an integer.strides: the number of bytes to traverse in each dimension of
Tensor
, which is a tuple.
x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)
print("x_shape:", x.shape)
print("x_dtype:", x.dtype)
print("x_itemsize:", x.itemsize)
print("x_nbytes:", x.nbytes)
print("x_ndim:", x.ndim)
print("x_size:", x.size)
print("x_strides:", x.strides)
x_shape: (2, 2)
x_dtype: Int32
x_itemsize: 4
x_nbytes: 16
x_ndim: 2
x_size: 4
x_strides: (8, 4)
Tensor Indexing
Tensor indexing is similar to NumPy indexing. Indexing starts from 0, negative indexing means indexing in reverse order, and colons :
and ...
are used for slicing.
tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
print("First row: {}".format(tensor[0]))
print("value of bottom right corner: {}".format(tensor[1, 1]))
print("Last column: {}".format(tensor[:, -1]))
print("First column: {}".format(tensor[..., 0]))
First row: [0. 1.]
value of bottom right corner: 3.0
Last column: [1. 3.]
First column: [0. 2.]
Tensor Operation
There are many operations between tensors, including arithmetic, linear algebra, matrix processing (transposing, indexing, and slicing), and sampling. The usage of tensor operation is similar to that of NumPy. The following describes several operations.
Common arithmetic operations include: addition (+), subtraction (-), multiplication (*), division (/), modulo (%), and exact division (//).
x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)
output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x
output_floordiv = y // x
print("add:", output_add)
print("sub:", output_sub)
print("mul:", output_mul)
print("div:", output_div)
print("mod:", output_mod)
print("floordiv:", output_floordiv)
add: [5. 7. 9.]
sub: [-3. -3. -3.]
mul: [ 4. 10. 18.]
div: [4. 2.5 2. ]
mod: [0. 1. 0.]
floordiv: [4. 2. 2.]
concat connects a series of tensors in a given dimension.
data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.concat((data1, data2), axis=0)
print(output)
print("shape:\n", output.shape)
[[0. 1.]
[2. 3.]
[4. 5.]
[6. 7.]]
shape:
(4, 2)
stack combines two tensors from another dimension.
data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.stack([data1, data2])
print(output)
print("shape:\n", output.shape)
[[[0. 1.]
[2. 3.]]
[[4. 5.]
[6. 7.]]]
shape:
(2, 2, 2)
Conversion Between Tensor and NumPy
Tensor and NumPy can be converted to each other.
Tensor to NumPy
Use Tensor.asnumpy() to convert Tensor to NumPy, which is same as tensor building.
t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))
t: [1. 1. 1. 1. 1.] <class 'mindspore.common.tensor.Tensor'>
n: [1. 1. 1. 1. 1.] <class 'numpy.ndarray'>
NumPy to Tensor
Use Tensor()
to convert NumPy to Tensor.
n = np.ones(5)
t = Tensor.from_numpy(n)
np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))
n: [2. 2. 2. 2. 2.] <class 'numpy.ndarray'>
t: [2. 2. 2. 2. 2.] <class 'mindspore.common.tensor.Tensor'>
Sparse Tensor
A sparse tensor is a special tensor in which the value of the most significant element is zero.
In some scenarios (such as recommendation systems, molecular dynamics, graph neural networks), the data is sparse. If you use common dense tensors to represent the data, you may introduce many unnecessary calculations, storage, and communication costs. In this case, it is better to use sparse tensor to represent the data.
MindSpore now supports the two most commonly used CSR
and COO
sparse data formats.
The common structure of the sparse tensor is <indices:Tensor, values:Tensor, shape:Tensor>
. indices
means the indexes of non-zero elements, values
means the values of non-zero elements, and shape
means the dense shape of the sparse tensor. In this structure, we define data structure CSRTensor
and COOTensor
.
CSRTensor
The compressed sparse row (CSR
) is efficient in both storage and computation. All the non-zero values are stored in values
, and their positions are stored in indptr
(row) and indices
(column). The meaning of each parameter is as follows:
indptr
: 1-D integer tensor, indicating the start and end points of the non-zero elements in each row of the sparse data invalues
. The index data type can be int16, int32, or int64.indices
: 1-D integer tensor, indicating the position of the sparse tensor non-zero elements in the column and has the same length asvalues
. The index data type can be int16, int32, or int64.values
: 1-D tensor, indicating that the value of the non-zero element corresponding to theCSRTensor
and has the same length asindices
.shape
: indicates the shape of a compressed sparse tensor. The data type isTuple
. Currently, only 2-DCSRTensor
is supported.
For details about
CSRTensor
, see mindspore.CSRTensor.
The following are some examples of using the CSRTensor:
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([1, 2], dtype=mindspore.float32)
shape = (2, 4)
# Make a CSRTensor
csr_tensor = CSRTensor(indptr, indices, values, shape)
print(csr_tensor.astype(mindspore.float64).dtype)
Float64
The above code generates a CSRTensor
as shown in the following equation:
COOTensor
The COO
(Coordinate Format) sparse tensor format is used to represent a collection of nonzero elements of a tensor on a given index. If the number of non-zero elements is N
and the dimension of the compressed tensor is ndims
. The meaning of each parameter is as follows:
indices
: 2-D integer tensor. Each row indicates a non-zero element subscript. Shape:[N, ndims]
. The index data type can be int16, int32, or int64.values
: 1-D tensor of any type, indicating the value of the non-zero element. Shape:[N]
.shape
: indicates the shape of a compressed sparse tensor. Currently, only 2-DCOOTensor
is supported.
For details about
COOTensor
, see mindspore.COOTensor.
The following are some examples of using COOTensor:
indices = Tensor([[0, 1], [1, 2]], dtype=mindspore.int32)
values = Tensor([1, 2], dtype=mindspore.float32)
shape = (3, 4)
# Make a COOTensor
coo_tensor = COOTensor(indices, values, shape)
print(coo_tensor.values)
print(coo_tensor.indices)
print(coo_tensor.shape)
print(coo_tensor.astype(mindspore.float64).dtype) # COOTensor to float64
[1. 2.]
[[0 1]
[1 2]]
(3, 4)
Float64
The preceding code generates COOTensor
as follows: