Introduction || Quick Start || Tensor || Dataset || Transforms || Model || Autograd || Train || Save and Load
Building a Network
The neural network model consists of neural network layers and Tensor operations. mindspore.nn
provides common neural network layer implementations, and the Cell
class in MindSpore is the base class for building all networks and is the basic unit of the network. Cell
, a neural network model, is composed of different sub-Cells
. Using such a nested structure, the neural network structure can be constructed and managed simply by using object-oriented programming thinking.
In the following we will construct a neural network model for the Mnist dataset classification.
import mindspore
from mindspore import nn, ops
Defining a Model Class
When define a neural network, we can inherit the nn.Cell
class, instantiate and manage the state of the sub-Cell in the __init__
method, and implement the Tensor operation in the construct
method.
construct
means neural network (computational graph) construction. For more details, see computational graph.
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
nn.ReLU(),
nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
nn.ReLU(),
nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
After completing construction, instantiate the Network
object and look at its structure.
model = Network()
print(model)
Network<
(flatten): Flatten<>
(dense_relu_sequential): SequentialCell<
(0): Dense<input_channels=784, output_channels=512, has_bias=True>
(1): ReLU<>
(2): Dense<input_channels=512, output_channels=512, has_bias=True>
(3): ReLU<>
(4): Dense<input_channels=512, output_channels=10, has_bias=True>
>
>
We construct an input data and call the model directly to obtain a 10-dimensional Tensor output that contains the original predicted values for each category.
The
model.construct()
method cannot be called directly.
X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
print(logits)
Tensor(shape=[1, 10], dtype=Float32, value=
[[-5.08734025e-04, 3.39190010e-04, 4.62840870e-03 ... -1.20305456e-03, -5.05689112e-03, 3.99264274e-03]])
On this basis, we obtain the prediction probabilities by an nn.Softmax
layer instance.
pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
Predicted class: [4]
Model Layers
In this section, we decompose each layer of the neural network model constructed in the previous section. First we construct a random data (3 images of 28x28) with shape (3, 28, 28) and pass through each neural network layer in turn to observe its effect.
input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)
(3, 28, 28)
nn.Flatten
Initialize the nn.Flatten
layer and convert a 28x28 2D tensor into a contiguous array of size 784.
flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)
(3, 784)
nn.Dense
nn.Dense
is the fully connected layer, which linearly transforms the input by using weights and deviations.
layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)
(3, 20)
nn.ReLU
nn.ReLU
layer adds a nonlinear activation function to the network, to help the neural network learn various complex features.
print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
Before ReLU: [[-0.04736331 0.2939465 -0.02713677 -0.30988005 -0.11504349 -0.11661264
0.18007928 0.43213072 0.12091967 -0.17465964 0.53133243 0.12605792
0.01825903 0.01287796 0.17238477 -0.1621131 -0.0080034 -0.24523425
-0.10083733 0.05171938]
[-0.04736331 0.2939465 -0.02713677 -0.30988005 -0.11504349 -0.11661264
0.18007928 0.43213072 0.12091967 -0.17465964 0.53133243 0.12605792
0.01825903 0.01287796 0.17238477 -0.1621131 -0.0080034 -0.24523425
-0.10083733 0.05171938]
[-0.04736331 0.2939465 -0.02713677 -0.30988005 -0.11504349 -0.11661264
0.18007928 0.43213072 0.12091967 -0.17465964 0.53133243 0.12605792
0.01825903 0.01287796 0.17238477 -0.1621131 -0.0080034 -0.24523425
-0.10083733 0.05171938]]
After ReLU: [[0. 0.2939465 0. 0. 0. 0.
0.18007928 0.43213072 0.12091967 0. 0.53133243 0.12605792
0.01825903 0.01287796 0.17238477 0. 0. 0.
0. 0.05171938]
[0. 0.2939465 0. 0. 0. 0.
0.18007928 0.43213072 0.12091967 0. 0.53133243 0.12605792
0.01825903 0.01287796 0.17238477 0. 0. 0.
0. 0.05171938]
[0. 0.2939465 0. 0. 0. 0.
0.18007928 0.43213072 0.12091967 0. 0.53133243 0.12605792
0.01825903 0.01287796 0.17238477 0. 0. 0.
0. 0.05171938]]
nn.SequentialCell
nn.SequentialCell
is an ordered Cell container. The input Tensor will pass through all the Cells in the defined order, and we can use SequentialCell
to construct a neural network model quickly.
seq_modules = nn.SequentialCell(
flatten,
layer1,
nn.ReLU(),
nn.Dense(20, 10)
)
logits = seq_modules(input_image)
print(logits.shape)
(3, 10)
nn.Softmax
Finally, the value of logits returned by the last fully-connected layer of the neural network is scaled to [0, 1] by using nn.Softmax
, indicating the predicted probability of each category. The dimensional values specified by axis
sum to 1.
softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)
Model Parameters
The internal neural network layer of the network has weight parameters and bias parameters (e.g. nn.Dense
), which are continuously optimized during the training process, and the parameter names and corresponding parameter details can be obtained through model.parameters_and_names()
.
print(f"Model structure: {model}\n\n")
for name, param in model.parameters_and_names():
print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")
Model structure: Network<
(flatten): Flatten<>
(dense_relu_sequential): SequentialCell<
(0): Dense<input_channels=784, output_channels=512, has_bias=True>
(1): ReLU<>
(2): Dense<input_channels=512, output_channels=512, has_bias=True>
(3): ReLU<>
(4): Dense<input_channels=512, output_channels=10, has_bias=True>
>
>
Layer: dense_relu_sequential.0.weight
Size: (512, 784)
Values : [[-0.01491369 0.00353318 -0.00694948 ... 0.01226766 -0.00014423
0.00544263]
[ 0.00212971 0.0019974 -0.00624789 ... -0.01214037 0.00118004
-0.01594325]]
Layer: dense_relu_sequential.0.bias
Size: (512,)
Values : [0. 0.]
Layer: dense_relu_sequential.2.weight
Size: (512, 512)
Values : [[ 0.00565423 0.00354313 0.00637383 ... -0.00352688 0.00262949
0.01157355]
[-0.01284141 0.00657666 -0.01217057 ... 0.00318963 0.00319115
-0.00186801]]
Layer: dense_relu_sequential.2.bias
Size: (512,)
Values : [0. 0.]
Layer: dense_relu_sequential.4.weight
Size: (10, 512)
Values : [[ 0.0087168 -0.00381866 -0.00865665 ... -0.00273731 -0.00391623
0.00612853]
[-0.00593031 0.0008721 -0.0060081 ... -0.00271535 -0.00850481
-0.00820513]]
Layer: dense_relu_sequential.4.bias
Size: (10,)
Values : [0. 0.]
For more built-in neural network layers, see mindspore.nn API.