# Quick Start [](https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/orange_pi/dev_start.md) Since developers may perform custom model and case development in OrangePi AIpro (hereinafter: OrangePi Development Board), this chapter illustrates the development considerations in the OrangePi Development Board through a handwritten digit recognition case based on MindSpore. ## Preparing Running Environment After obtaining the OrangePi AIpro development board, developers first need to confirm hardware resources, burn images, and upgrade CANN and MindSpore versions before running the case. The specific steps are as follows: | OrangePi AIpro | Image | CANN Toolkit/Kernels | MindSpore | | :----:| :----: | :----:| :----: | | 8T 16G | Ubuntu | 8.0.RC3.alpha002| 2.4.10 | | 8T 16G | Ubuntu | 8.0.0beta1| 2.5.0 | ### Image Burning To run this case, it is necessary to burn the Ubuntu image on the OrangePi AIpro official website. Please refer to [Image Burning](https://www.mindspore.cn/tutorials/en/master/orange_pi/environment_setup.html#1-image-burning-taking-windows-as-an-example). ### CANN Upgrading Please refer to [CANN Upgrading](https://www.mindspore.cn/tutorials/en/master/orange_pi/environment_setup.html#3-cann-upgrading). ### MindSpore Upgrading Please refer to [MindSpore Upgrading](https://www.mindspore.cn/tutorials/en/master/orange_pi/environment_setup.html#4-mindspore-upgrading). ```python from mindspore import nn from mindspore.dataset import vision, transforms from mindspore.dataset import MnistDataset ``` ## Setting Running Environment max_device_memory="2GB" : Set the maximum memory available to the device to 2GB. mode=mindspore.GRAPH_MODE : Indicates running in GRAPH_MODE mode. device_target="Ascend" : Indicates that the target device to be run is Ascend. jit_config={"jit_level":"O2"} : The compilation optimization level turns on extreme performance optimization and uses sinking execution. ascend_config={"precision_mode":"allow_mix_precision"} : Auto mixed-precision, which automatically reduces the precision of some operators to float16 or bfloat16. ```python import mindspore mindspore.set_context(max_device_memory="2GB", mode=mindspore.GRAPH_MODE, device_target="Ascend", jit_config={"jit_level":"O2"}, ascend_config={"precision_mode":"allow_mix_precision"}) ``` ## Preparing and Loading Dataset MindSpore provides a Pipeline-based [data engine](https://www.mindspore.cn/docs/en/master/design/data_engine.html) to realize efficient data preprocessing through [data loading and processing](https://www.mindspore.cn/tutorials/en/master/beginner/dataset.html) to realize efficient data preprocessing. In this case, we use the Mnist dataset, which is automatically downloaded and then preprocessed using the data transforms provided by `mindspore.dataset`. ```python #install download !pip install download ``` ```python # Download data from open datasets from download import download url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \ "notebook/datasets/MNIST_Data.zip" path = download(url, "./", kind="zip", replace=True) ``` ```text Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB) file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:01<00:00, 7.63MB/s] Extracting zip file... Successfully downloaded / unzipped to ./ ``` The MNIST dataset catalog is structured as follows: ```text MNIST_Data └── train ├── train-images-idx3-ubyte (60000 training images) ├── train-labels-idx1-ubyte (60000 training labels) └── test ├── t10k-images-idx3-ubyte (10000 test images) ├── t10k-labels-idx1-ubyte (10000 test labels) ``` After the data download is complete, the dataset object is obtained. ```python train_dataset = MnistDataset('MNIST_Data/train') test_dataset = MnistDataset('MNIST_Data/test') ``` Prints the names of the data columns contained in the dataset for dataset preprocessing. ```python print(train_dataset.get_col_names()) ``` ```text ['image', 'label'] ``` MindSpore dataset using data processing pipeline needs to specify map, batch, shuffle and other operations. Here we use map to transform the image data and labels by scaling the input image to 1/255, normalizing it according to the mean value of 0.1307 and standard deviation value of 0.3081, and then packing the processed dataset into a batch of size 64. ```python def datapipe(dataset, batch_size): image_transforms = [ vision.Rescale(1.0 / 255.0, 0), vision.Normalize(mean=(0.1307,), std=(0.3081,)), vision.HWC2CHW() ] label_transform = transforms.TypeCast(mindspore.int32) dataset = dataset.map(image_transforms, 'image') dataset = dataset.map(label_transform, 'label') dataset = dataset.batch(batch_size) return dataset ``` ```python # Map vision transforms and batch dataset train_dataset = datapipe(train_dataset, 64) test_dataset = datapipe(test_dataset, 64) ``` The dataset can be accessed iteratively using [create_tuple_iterator](https://www.mindspore.cn/docs/en/master/api_python/dataset/dataset_method/iterator/mindspore.dataset.Dataset.create_tuple_iterator.html) or [create_dict_iterator](https://www.mindspore.cn/docs/en/master/api_python/dataset/dataset_method/iterator/mindspore.dataset.Dataset.create_dict_iterator.html) to see the shape and datatype of the data and labels. ```python for image, label in test_dataset.create_tuple_iterator(): print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}") print(f"Shape of label: {label.shape} {label.dtype}") break ``` ```text Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32 Shape of label: (64,) Int32 ``` ```python for data in test_dataset.create_dict_iterator(): print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}") print(f"Shape of label: {data['label'].shape} {data['label'].dtype}") break ``` ```text Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32 Shape of label: (64,) Int32 ``` ## Model Building ```python # Define model class Network(nn.Cell): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.dense_relu_sequential = nn.SequentialCell( nn.Dense(28*28, 512), nn.ReLU(), nn.Dense(512, 512), nn.ReLU(), nn.Dense(512, 10) ) def construct(self, x): x = self.flatten(x) logits = self.dense_relu_sequential(x) return logits model = Network() print(model) ``` ```text Network< (flatten): Flatten<> (dense_relu_sequential): SequentialCell< (0): Dense<input_channels=784, output_channels=512, has_bias=True> (1): ReLU<> (2): Dense<input_channels=512, output_channels=512, has_bias=True> (3): ReLU<> (4): Dense<input_channels=512, output_channels=10, has_bias=True> > > ``` ## Model Training In model training, a complete training process (STEP) requires the realization of the following three steps: 1. **Forward computation**: the model predicts the results, and with the correct label to find the predicted loss. 2. **Backpropagation**: automatically solves for the gradients of the model parameters with respect to the loss, using an automatic differentiation mechanism. 3. **Parameter optimization**: update the gradients to the parameters. MindSpore uses a functional automatic differentiation mechanism, so for the above steps need to be implemented: 1. Define the forward computation function. 2. Use [value_and_grad](https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.value_and_grad.html) to obtain the gradient computation function by functional transformation. 3. Define the training function and use [set_train](https://www.mindspore.cn/docs/en/master/api_python/nn/mindspore.nn.Cell.html#mindspore.nn.Cell.set_train) to set to training mode, perform forward computation, backpropagation and parameter optimization. ```python # Instantiate loss function and optimizer loss_fn = nn.CrossEntropyLoss() optimizer = nn.SGD(model.trainable_params(), 1e-2) # 1. Define forward function def forward_fn(data, label): logits = model(data) loss = loss_fn(logits, label) return loss, logits # 2. Get gradient function grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) # 3. Define function of one-step training def train_step(data, label): (loss, _), grads = grad_fn(data, label) optimizer(grads) return loss def train(model, dataset): size = dataset.get_dataset_size() model.set_train() for batch, (data, label) in enumerate(dataset.create_tuple_iterator()): loss = train_step(data, label) if batch % 100 == 0: loss, current = loss.asnumpy(), batch print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]") ``` In addition to training, we define test functions to evaluate the performance of the model. ```python def test(model, dataset, loss_fn): num_batches = dataset.get_dataset_size() model.set_train(False) total, test_loss, correct = 0, 0, 0 for data, label in dataset.create_tuple_iterator(): pred = model(data) total += len(data) test_loss += loss_fn(pred, label).asnumpy() correct += (pred.argmax(1) == label).asnumpy().sum() test_loss /= num_batches correct /= total print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") ``` The training process requires multiple iterations of the dataset, and a complete iteration is called a round (epoch). In each round, the training set is traversed for training and at the end the test set is used for prediction. Printing the loss value and prediction accuracy for each round, we can see that the loss is decreasing and Accuracy is increasing. ```python epochs = 3 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(model, train_dataset) test(model, test_dataset, loss_fn) print("Done!") ``` ```text Epoch 1 ------------------------------- loss: 2.302898 [ 0/938] loss: 1.729961 [100/938] loss: 0.865714 [200/938] loss: 0.782822 [300/938] loss: 0.389282 [400/938] loss: 0.293149 [500/938] loss: 0.474819 [600/938] loss: 0.242542 [700/938] loss: 0.542277 [800/938] loss: 0.342929 [900/938] Test: Accuracy: 90.7%, Avg loss: 0.321954 Epoch 2 ------------------------------- loss: 0.249492 [ 0/938] loss: 0.347967 [100/938] loss: 0.220382 [200/938] loss: 0.308149 [300/938] loss: 0.353044 [400/938] loss: 0.392116 [500/938] loss: 0.396438 [600/938] loss: 0.231412 [700/938] loss: 0.194819 [800/938] loss: 0.228290 [900/938] Test: Accuracy: 93.0%, Avg loss: 0.249993 Epoch 3 ------------------------------- loss: 0.343888 [ 0/938] loss: 0.307786 [100/938] loss: 0.153425 [200/938] loss: 0.254917 [300/938] loss: 0.198072 [400/938] loss: 0.108963 [500/938] loss: 0.202033 [600/938] loss: 0.340418 [700/938] loss: 0.144911 [800/938] loss: 0.175447 [900/938] Test: Accuracy: 93.7%, Avg loss: 0.212180 Done! ``` ## Saving Models Once the model is trained, its parameters need to be saved. ```python # Save checkpoint mindspore.save_checkpoint(model, "model.ckpt") print("Saved Model to model.ckpt") ``` ```text Saved Model to model.ckpt ``` ## Loading Weights Loading the saved weights is a two-step process: 1. re-instantiate the model object and construct the model. 2. load the model parameters and load them onto the model. ```python # Instantiate a random initialized model model = Network() # Load checkpoint and load parameter to model param_dict = mindspore.load_checkpoint("model.ckpt") param_not_load, _ = mindspore.load_param_into_net(model, param_dict) print(param_not_load) ``` ```text [] ``` > `param_not_load` is the list of parameters that were not loaded. Being empty means all parameters were loaded successfully. ## Model Inference The loaded model can be used directly for predictive inference. ```python import matplotlib.pyplot as plt model.set_train(False) for data, label in test_dataset: pred = model(data) predicted = pred.argmax(1) print(f'Predicted: "{predicted[:6]}", Actual: "{label[:6]}"') # Display the number and the predicted value of the number plt.figure() for i in range(6): plt.subplot(2, 3, i + 1) # If the prediction is correct, it will be displayed in blue; if the prediction is incorrect, it will be displayed in red color = 'blue' if predicted[i] == label[i] else 'red' plt.title('Predicted:{}'.format(predicted[i]), color=color) plt.imshow(data.asnumpy()[i][0], interpolation="None", cmap="gray") plt.axis('off') plt.show() break ``` ```text Predicted: "[2 1 0 4 1 7]", Actual: "[2 1 0 4 1 7]" ``` More examples of MindSpore-based OrangePi development boards are detailed in: [GitHub link](https://github.com/mindspore-courses/orange-pi-mindspore) The required environment for the operation of this case: - Hardware: OrangePi AIpro 16G 8-12T development board - Image: OrangePi AIpro official Ubuntu image - CANN: 8.0.RC3.alpha002 - MindSpore: 2.4.10