Converting Models for Inference
Windows
Linux
Model Converting
Intermediate
Expert
Overview
MindSpore Lite provides a tool for offline model conversion. It supports conversion of multiple types of models. The converted models can be used for inference. The command line parameters contain multiple personalized options, providing a convenient conversion method for users.
Currently, the following input formats are supported: MindSpore, TensorFlow Lite, Caffe, TensorFlow and ONNX.
The ms model converted by the conversion tool supports the conversion tool and the higher version of the Runtime framework to perform inference.
Linux Environment Instructions
Environment Preparation
To use the MindSpore Lite model conversion tool, you need to prepare the environment as follows:
Configure environment variables, refer to Configure converter.
Parameter Description
MindSpore Lite model conversion tool provides multiple parameters.
You can enter ./converter_lite --help
to obtain the help information in real time.
The following describes the parameters in detail.
Parameter |
Mandatory or Not |
Parameter Description |
Value Range |
Default Value |
---|---|---|---|---|
|
No |
Prints all the help information. |
- |
- |
|
Yes |
Original format of the input model. |
MINDIR, CAFFE, TFLITE, TF, or ONNX |
- |
|
Yes |
Path of the input model. |
- |
- |
|
Yes |
Path of the output model. The suffix |
- |
- |
|
Yes (for Caffe models only) |
Path of the weight file of the input model. |
- |
- |
|
No |
Sets the quantization type of the model. |
PostTraining: quantization after training |
- |
|
No |
Sets the quantization bitNum when quantType is set as WeightQuant, now supports 1 bit to 16 bit quantization. |
[1, 16] |
8 |
|
No |
Sets a size threshold of convolution filter when quantType is set as WeightQuant. If the size is bigger than this value, it will trigger weight quantization. |
[0, +∞) |
0 |
|
No |
Sets a channel number threshold of convolution filter when quantType is set as WeightQuant. If the number is bigger than this, it will trigger weight quantization. |
[0, +∞) |
16 |
|
No |
Profile path of calibration dataset when quantType is set as PostTraining. |
- |
- |
The parameter name and parameter value are separated by an equal sign (=) and no space is allowed between them.
The Caffe model is divided into two files: model structure
*.prototxt
, corresponding to the--modelFile
parameter; model weight*.caffemodel
, corresponding to the--weightFile
parameter.In order to ensure the accuracy of weight quantization, the “–bitNum” parameter should better be set to a range from 8bit to 16bit.
PostTraining method currently only supports activation quantization and weight quantization in 8 bit.
Example
First, in the root directory of the source code, run the following command to perform compilation.
bash build.sh -I x86_64
Currently, the model conversion tool supports only the x86_64 architecture.
The following describes how to use the conversion command by using several common examples.
Take the Caffe model LeNet as an example. Run the following conversion command:
./converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
In this example, the Caffe model is used. Therefore, the model structure and model weight files are required. Two more parameters
fmk
andoutputFile
are also required.The output is as follows:
CONVERTER RESULT SUCCESS:0
This indicates that the Caffe model is successfully converted into the MindSpore Lite model and the new file
lenet.ms
is generated.The following uses the MindSpore, TensorFlow Lite, ONNX models as examples to describe how to run the conversion command.
MindSpore model
model.mindir
./converter_lite --fmk=MINDIR --modelFile=model.mindir --outputFile=model
The
MindIR
model exported by MindSpore v1.1.1 or earlier is recommended to be converted to thems
model using the converter tool of the corresponding version. MindSpore v1.1.1 and later versions, the converter tool will be forward compatible.TensorFlow Lite model
model.tflite
./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
TensorFlow model
model.pb
./converter_lite --fmk=TF --modelFile=model.pb --outputFile=model
ONNX model
model.onnx
./converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
In the preceding scenarios, the following information is displayed, indicating that the conversion is successful. In addition, the target file
model.ms
is obtained.CONVERTER RESULT SUCCESS:0
If running the conversion command is failed, an errorcode will be output.
Windows Environment Instructions
Environment Preparation
To use the MindSpore Lite model conversion tool, the following environment preparations are required.
Configure environment variables, refer to Configure converter.
Parameter Description
Refer to the Linux environment model conversion tool parameter description.
Example
Set the log printing level to INFO.
set GLOG_v=1
Log level: 0 is DEBUG, 1 is INFO, 2 is WARNING, 3 is ERROR.
Several common examples are selected below to illustrate the use of conversion commands.
Take the Caffe model LeNet as an example to execute the conversion command.
call converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
In this example, because the Caffe model is used, two input files of model structure and model weight are required. Then with the fmk type and output path two parameters which are required, you can successfully execute.
The result is shown as:
CONVERTER RESULT SUCCESS:0
This means that the Caffe model has been successfully converted to the MindSpore Lite model and the new file
lenet.ms
has been obtained.Take MindSpore, TensorFlow Lite, ONNX model format and perceptual quantization model as examples to execute conversion commands.
MindSpore model
model.mindir
call converter_lite --fmk=MINDIR --modelFile=model.mindir --outputFile=model
The
MindIR
model exported by MindSpore v1.1.1 or earlier is recommended to be converted to thems
model using the converter tool of the corresponding version. MindSpore v1.1.1 and later versions, the converter tool will be forward compatible.TensorFlow Lite model
model.tflite
call converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
TensorFlow model
model.pb
call converter_lite --fmk=TF --modelFile=model.pb --outputFile=model
ONNX model
model.onnx
call converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
In the above cases, the following conversion success prompt is displayed, and the
model.ms
target file is obtained at the same time.CONVERTER RESULT SUCCESS:0
If running the conversion command is failed, an errorcode will be output.