mindspore_serving.server
MindSpore Serving is a lightweight and high-performance service module that helps MindSpore developers efficiently deploy online inference services in the production environment.
MindSpore Serving server API, which can be used to start servables, gRPC and RESTful server. A servable corresponds to the service provided by a model. The client sends inference tasks and receives inference results through gRPC and RESTful server.
- class mindspore_serving.server.SSLConfig(certificate, private_key, custom_ca=None, verify_client=False)[source]
The server’s ssl_config encapsulates necessary parameters for SSL-enabled connections.
- Parameters
certificate (str) – File holding the PEM-encoded certificate chain as a byte string to use or None if no certificate chain should be used.
private_key (str) – File holding the PEM-encoded private key as a byte string, or None if no private key should be used.
custom_ca (str, optional) – File holding the PEM-encoded root certificates as a byte string. When verify_client is True, custom_ca must be provided. When verify_client is False, this parameter will be ignored. Default: None.
verify_client (bool, optional) – If verify_client is true, use mutual authentication. If false, use one-way authentication. Default: False.
- Raises
RuntimeError – The type or value of the parameters are invalid.
- class mindspore_serving.server.ServableStartConfig(servable_directory, servable_name, device_ids=None, version_number=0, device_type=None, num_parallel_workers=0, dec_key=None, dec_mode='AES-GCM')[source]
Servable startup configuration.
For more detail, please refer to MindSpore-based Inference Service Deployment and Servable Provided Through Model Configuration.
- Parameters
servable_directory (str) – The directory where the servable is located in. There expects to has a directory named servable_name.
servable_name (str) – The servable name.
device_ids (Union[int, list[int], tuple[int]], optional) – The device list the model loads into and runs in. Used when device type is Nvidia GPU, Ascend 310/310P/910. Default None.
version_number (int, optional) – Servable version number to be loaded. The version number should be a positive integer, starting from 1, and 0 means to load the latest version. Default: 0.
device_type (str, optional) –
Currently supports “Ascend”, “GPU”, “CPU” and None. Default: None.
”Ascend”: the platform expected to be Ascend 310/310P/910, etc.
”GPU”: the platform expected to be Nvidia GPU.
”CPU”: the platform expected to be CPU.
None: the platform is determined by the MindSpore environment.
num_parallel_workers (int, optional) – This feature is currently in beta. The number of processes processing python tasks, at least the number of device cards used specified by the parameter device_ids. It will be adjusted to the number of device cards when it is less than the number of device cards. Default: 0.
dec_key (bytes, optional) – Byte type key used for decryption. The valid length is 16, 24, or 32. Default: None.
dec_mode (str, optional) – Specifies the decryption mode, take effect when dec_key is set. Option: ‘AES-GCM’ or ‘AES-CBC’. Default: ‘AES-GCM’.
- Raises
RuntimeError – The type or value of the parameters are invalid.
- mindspore_serving.server.start_grpc_server(address, max_msg_mb_size=100, ssl_config=None)[source]
Start gRPC server for the communication between serving client and server.
- Parameters
address (str) –
gRPC server address, the address can be {ip}:{port} or unix:{unix_domain_file_path}.
{ip}:{port} - Internet domain socket address.
unix:{unix_domain_file_path} - Unix domain socket address, which is used to communicate with multiple processes on the same machine. {unix_domain_file_path} can be relative or absolute file path, but the directory where the file is located must already exist.
max_msg_mb_size (int, optional) – The maximum acceptable gRPC message size in megabytes(MB), value range [1, 512]. Default: 100.
ssl_config (mindspore_serving.server.SSLConfig, optional) – The server’s ssl_config, if None, disabled ssl. Default: None.
- Raises
RuntimeError – Failed to start the gRPC server: parameter verification failed, the gRPC address is wrong or the port is duplicate.
Examples
>>> from mindspore_serving import server >>> >>> server.start_grpc_server("0.0.0.0:5500")
- mindspore_serving.server.start_restful_server(address, max_msg_mb_size=100, ssl_config=None)[source]
Start RESTful server for the communication between serving client and server.
- Parameters
address (str) – RESTful server address, the address should be Internet domain socket address.
max_msg_mb_size (int, optional) – The maximum acceptable RESTful message size in megabytes(MB), value range [1, 512]. Default: 100.
ssl_config (mindspore_serving.server.SSLConfig, optional) – The server’s ssl_config, if None, disabled ssl. Default: None.
- Raises
RuntimeError – Failed to start the RESTful server: parameter verification failed, the RESTful address is wrong or the port is duplicate.
Examples
>>> from mindspore_serving import server >>> >>> server.start_restful_server("0.0.0.0:5900")
- mindspore_serving.server.start_servables(servable_configs)[source]
Start up servables.
It can be used to start multiple different servables. One servable can be deployed on multiple chips, and each chip runs a servable copy.
On Ascend 910 hardware platform, each copy of each servable owns one chip. Different servables or different versions of the same servable need to be deployed on different chips. On Ascend 310 and GPU hardware platform, one chip can be shared by multi servables, and different servables or different versions of the same servable can be deployed on the same chip to realize chip reuse.
- Parameters
servable_configs (Union[ServableStartConfig, list[ServableStartConfig], tuple[ServableStartConfig]]) – The startup configs of one or more servables.
- Raises
RuntimeError – Failed to start one or more servables. For log of one servable, please refer to subdirectory serving_logs.
Examples
>>> import os >>> from mindspore_serving import server >>> >>> servable_dir = os.path.abspath(".") >>> resnet_config = server.ServableStartConfig(servable_dir, "resnet", device_ids=(0,1)) >>> add_config = server.ServableStartConfig(servable_dir, "add", device_ids=(2,3)) >>> server.start_servables(servable_configs=(resnet_config, add_config)) # press Ctrl+C to stop >>> server.start_grpc_server("0.0.0.0:5500")
- mindspore_serving.server.stop()[source]
Stop the running of serving server.
Examples
>>> from mindspore_serving import server >>> >>> server.start_grpc_server("0.0.0.0:5500") >>> server.start_restful_server("0.0.0.0:1500") >>> ... >>> server.stop()
mindspore_serving.server.register
Servable register interface, used in servable_config.py of one servable. See how to configure servable_config.py file, please refer to Servable Provided Through Model Configuration.
- class mindspore_serving.server.register.AclOptions(**kwargs)[source]
Helper class to set Ascend device infos.
Warning
‘AclOptions’ is deprecated from version 1.6.0 and will be removed in a future version, use
mindspore_serving.server.register.AscendDeviceInfo
instead.- Parameters
insert_op_cfg_path (str, optional) – Path of aipp config file.
input_format (str, optional) – Manually specify the model input format, the value can be “ND”, “NCHW”, “NHWC”, “CHWN”, “NC1HWC0”, or “NHWC1C0”.
input_shape (str, optional) – Manually specify the model input shape, such as “input_op_name1: n1,c2,h3,w4;input_op_name2: n4,c3,h2,w1”.
output_type (str, optional) – Manually specify the model output type, the value can be “FP16”, “UINT8” or “FP32”, Default: “FP32”.
precision_mode (str, optional) – Model precision mode, the value can be “force_fp16”,”allow_fp32_to_fp16”, “must_keep_origin_dtype” or “allow_mix_precision”. Default: “force_fp16”.
op_select_impl_mode (str, optional) – The operator selection mode, the value can be “high_performance” or “high_precision”. Default: “high_performance”.
- Raises
RuntimeError – Acl option is invalid, or value is not str.
Examples
>>> from mindspore_serving.server import register >>> options = register.AclOptions(op_select_impl_mode="high_precision", precision_mode="allow_fp32_to_fp16") >>> register.declare_servable(servable_file="deeptext.mindir", model_format="MindIR", options=options)
- class mindspore_serving.server.register.AscendDeviceInfo(**kwargs)[source]
Helper class to set Ascend device infos. For more details about the parameters, see parameters description of ATC tool.
- Parameters
insert_op_cfg_path (str, optional) – Path of aipp config file.
input_format (str, optional) – Manually specify the model input format, the value can be “ND”, “NCHW”, “NHWC”, “CHWN”, “NC1HWC0”, or “NHWC1C0”.
input_shape (str, optional) – Manually specify the model input shape, such as “input_op_name1: n1,c2,h3,w4;input_op_name2: n4,c3,h2,w1”.
output_type (str, optional) – Manually specify the model output type, the value can be “FP16”, “UINT8” or “FP32”, Default: “FP32”.
precision_mode (str, optional) – Model precision mode, the value can be “force_fp16”,”allow_fp32_to_fp16”, “must_keep_origin_dtype” or “allow_mix_precision”. Default: “force_fp16”.
op_select_impl_mode (str, optional) – The operator selection mode, the value can be “high_performance” or “high_precision”. Default: “high_performance”.
fusion_switch_config_path (str, optional) – Configuration file path of the convergence rule, including graph convergence and UB convergence. The system has built-in graph convergence and UB convergence rules, which are enableed by default. You can disable the reuls specified in the file by setting this parameter.
buffer_optimize_mode (str, optional) – The value can be “l1_optimize”, “l2_optimize”, “off_optimize” or “l1_and_l2_optimize”. Default “l2_optimize”.
- Raises
RuntimeError – Acl device info is invalid.
Examples
>>> from mindspore_serving.server import register >>> context = register.Context() >>> context.append_device_info(register.AscendDeviceInfo(input_format="NCHW")) >>> model = register.declare_model(model_file="deeptext.ms", model_format="MindIR_Opt", context=context)
- class mindspore_serving.server.register.CPUDeviceInfo(**kwargs)[source]
Helper class to set cpu device info.
- Parameters
precision_mode (str, optional) – inference operator selection, and the value can be “origin”, “fp16”. Default: “origin”.
- Raises
RuntimeError – Cpu option is invalid, or value is not str.
Examples
>>> from mindspore_serving.server import register >>> context = register.Context() >>> context.append_device_info(register.CPUDeviceInfo(precision_mode="fp16")) >>> model = register.declare_model(model_file="deeptext.ms", model_format="MindIR_Opt", context=context)
- class mindspore_serving.server.register.Context(**kwargs)[source]
Context is used to store environment variables during execution. When using mindspore lite and the device type is Ascend or Gpu, the extra CPUDeviceInfo will be used.
- Parameters
thread_num (int, optional) – Set the number of threads at runtime. Only valid when using mindspore lite.
thread_affinity_core_list (tuple[int], list[int], optional) – Set the thread lists to CPU cores. Only valid when using mindspore lite.
enable_parallel (bool, optional) – Set the status whether to perform model inference or training in parallel. Only valid when using mindspore lite.
Examples
>>> from mindspore_serving.server import register >>> import numpy as np >>> context = register.Context(thread_num=1, thread_affinity_core_list=[1,2], enable_parallel=True) >>> context.append_device_info(register.GPUDeviceInfo(precision_mode="fp16")) >>> model = declare_model(model_file="tensor_add.mindir", model_format="MindIR", context=context)
- Raises
RuntimeError – type or value of input parameters are invalid.
- append_device_info(device_info)[source]
Append one user-defined device info to the context
- Parameters
device_info (Union[CPUDeviceInfo, GPUDeviceInfo, AscendDeviceInfo]) – User-defined device info for one device, otherwise default values are used. You can customize device info for each device, and the system selects the required device info based on the actual backend device and inference package.
- Raises
RuntimeError – type or value of input parameters are invalid.
- class mindspore_serving.server.register.GPUDeviceInfo(**kwargs)[source]
Helper class to set gpu device info.
- Parameters
precision_mode (str, optional) – inference operator selection, and the value can be “origin”, “fp16”. Default: “origin”.
- Raises
RuntimeError – Gpu option is invalid, or value is not str.
Examples
>>> from mindspore_serving.server import register >>> context = register.Context() >>> context.append_device_info(register.GPUDeviceInfo(precision_mode="fp16")) >>> model = register.declare_model(model_file="deeptext.mindir", model_format="MindIR", context=context)
- class mindspore_serving.server.register.GpuOptions(**kwargs)[source]
Helper class to set gpu options.
Warning
‘GpuOptions’ is deprecated from version 1.6.0 and will be removed in a future version, use
mindspore_serving.server.register.GPUDeviceInfo
instead.- Parameters
precision_mode (str, optional) – inference operator selection, and the value can be “origin”, “fp16”. Default: “origin”.
- Raises
RuntimeError – Gpu option is invalid, or value is not str.
Examples
>>> from mindspore_serving.server import register >>> options = register.GpuOptions(precision_mode="origin") >>> register.declare_servable(servable_file="deeptext.mindir", model_format="MindIR", options=options)
- class mindspore_serving.server.register.Model(model_key)[source]
Indicate a model. User should not construct Model object directly, it’s need to returned from declare_model or declare_servable
- Parameters
model_key (str) – Model key identifies the model.
- call(*args, subgraph=0)[source]
Invoke the model inference interface based on instances.
Note
This is a beta interface and may not function stably.
- Parameters
subgraph (int, optional) – Subgraph index, used when there are multiply sub-graphs in one model.
args – tuple/list of instances, or inputs of one instance.
- Raises
RuntimeError – Inputs are invalid.
- Returns
Tuple of instances when input parameter ‘args’ is tuple/list, or outputs of one instance.
Examples
>>> import numpy as np >>> from mindspore_serving.server import register >>> import mindspore.dataset.vision.c_transforms as VC >>> model = register.declare_model(model_file="resnet_bs32.mindir", model_format="MindIR") # batch_size=32 >>> >>> def preprocess(image): ... decode = VC.Decode() ... resize = VC.Resize([224, 224]) ... normalize = VC.Normalize(mean=[125.307, 122.961, 113.8575], std=[51.5865, 50.847, 51.255]) ... hwc2chw = VC.HWC2CHW() ... image = decode(image) ... image = resize(image) # [3,224,224] ... image = normalize(image) # [3,224,224] ... image = hwc2chw(image) # [3,224,224] ... return input >>> >>> def postprocess(score): >>> return np.argmax(score) >>> >>> def call_resnet_model(image): ... image = preprocess(image) ... score = model.call(image) # for only one instance ... return postprocess(score) >>> >>> def call_resnet_model_batch(instances): ... input_instances = [] ... for instance in instances: ... image = instance[0] # only one input ... image = preprocess(image) # [3,224,224] ... input_instances.append([image]) ... output_instances = model.call(input_instances) # for multiply instances ... for instance in output_instances: ... score = instance[0] # only one output for each instance ... index = postprocess(score) ... yield index >>> >>> @register.register_method(output_names=["index"]) >>> def predict_v1(image): # without pipeline, call model with only one instance a time ... index = register.add_stage(call_resnet_model, image, outputs_count=1) ... return index >>> >>> @register.register_method(output_names=["index"]) >>> def predict_v2(image): # without pipeline, call model with maximum 32 instances a time ... index = register.add_stage(call_resnet_model_batch, image, outputs_count=1, batch_size=32) ... return index >>> >>> @register.register_method(output_names=["index"]) >>> def predict_v3(image): # pipeline ... image = register.add_stage(preprocess, image, outputs_count=1) ... score = register.add_stage(model, image, outputs_count=1) ... index = register.add_stage(postprocess, score, outputs_count=1) ... return index
- mindspore_serving.server.register.add_stage(stage, *args, outputs_count, batch_size=None, tag=None)[source]
Used in the functions wrapped by register_method, define a stage that call a function/model and indicates the input data used by the function/model.
Note
The length of ‘args’ should be equal to the inputs number of function or model.
- Parameters
stage (Union(function, Model)) – User-defined python function or Model object return by declare_model.
outputs_count (int) – outputs count of stage
batch_size (int, optional) –
This parameter is valid only when stage is a function and the function can process multi instances at a time. default None.
None, The input of the function will be the inputs of one instance.
0, The input of the function will be tuple object of instances, and the maximum number of the instances is determined by the server based on the batch size of models.
int value >= 1, The input of the function will be tuple object of instances, and the maximum number of the instances is the value specified by ‘batch_size’.
args – Stage inputs placeholders, which come from the inputs of the function wrapped by register_method or the outputs of add_stage. The length of ‘args’ should equal to the input number of the function or model.
tag (str, optional) – Customized flag of the stage, such as “Preprocess”, default None.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
Examples
>>> import numpy as np >>> from mindspore_serving.server import register >>> add_model = register.declare_model(model_file="tensor_add.mindir", model_format="MindIR") >>> >>> def preprocess(x1, x2): ... return x1.astype(np.float32), x2.astype(np.float32) >>> >>> @register.register_method(output_names=["y"]) # register add_common method in add >>> def add_common(x1, x2): ... x1, x2 = register.add_stage(preprocess, x1, x2, outputs_count=2) # call preprocess in stage 1 ... y = register.add_stage(add_model, x1, x2, outputs_count=1) # call add model in stage 2 ... return y
- mindspore_serving.server.register.call_postprocess(postprocess_fun, *args)[source]
For method registration, define the postprocessing function and its’ parameters.
Warning
‘call_postprocess’ is deprecated from version 1.5.0 and will be removed in a future version, use
mindspore_serving.server.register.add_stage
instead.Note
The length of ‘args’ should be equal to the inputs number of postprocess_fun.
- Parameters
postprocess_fun (function) – Python function for postprocess.
args – Preprocess inputs. The length of ‘args’ should equal to the input parameters number of implemented python function.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
- mindspore_serving.server.register.call_postprocess_pipeline(postprocess_fun, *args)[source]
For method registration, define the postprocessing pipeline function and its’ parameters.
Warning
‘call_postprocess_pipeline’ is deprecated from version 1.5.0 and will be removed in a future version, use
mindspore_serving.server.register.add_stage
instead.A single request can include multiple instances, so multiple queued requests will also have multiple instances. If you need to process multiple instances through multi thread or other parallel processing capability in preprocess or postprocess, such as using MindData concurrency ability to process multiple input images in preprocess, MindSpore Serving provides ‘call_preprocess_pipeline’ and ‘call_postprocess_pipeline’ to register such preprocessing and postprocessing. For more detail, please refer to Resnet50 model configuration example.
- Parameters
postprocess_fun (function) – Python pipeline function for postprocess.
args – Preprocess inputs. The length of ‘args’ should equal to the input parameters number of implemented python function.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
- mindspore_serving.server.register.call_preprocess(preprocess_fun, *args)[source]
For method registration, define the preprocessing function and its’ parameters.
Warning
‘call_preprocess’ is deprecated from version 1.5.0 and will be removed in a future version, use
mindspore_serving.server.register.add_stage
instead.Note
The length of ‘args’ should be equal to the inputs number of preprocess_fun.
- Parameters
preprocess_fun (function) – Python function for preprocess.
args – Preprocess inputs. The length of ‘args’ should equal to the input parameters number of implemented python function.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
Examples
>>> from mindspore_serving.server import register >>> import numpy as np >>> def add_trans_datatype(x1, x2): ... return x1.astype(np.float32), x2.astype(np.float32) >>> >>> register.declare_servable(servable_file="tensor_add.mindir", model_format="MindIR", with_batch_dim=False) >>> >>> @register.register_method(output_names=["y"]) # register add_cast method in add >>> def add_cast(x1, x2): ... x1, x2 = register.call_preprocess(add_trans_datatype, x1, x2) # cast input to float32 ... y = register.call_servable(x1, x2) ... return y
- mindspore_serving.server.register.call_preprocess_pipeline(preprocess_fun, *args)[source]
For method registration, define the preprocessing pipeline function and its’ parameters.
Warning
‘call_preprocess_pipeline’ is deprecated from version 1.5.0 and will be removed in a future version, use
mindspore_serving.server.register.add_stage
instead.A single request can include multiple instances, so multiple queued requests will also have multiple instances. If you need to process multiple instances through multi thread or other parallel processing capability in preprocess or postprocess, such as using MindData concurrency ability to process multiple input images in preprocess, MindSpore Serving provides ‘call_preprocess_pipeline’ and ‘call_postprocess_pipeline’ to register such preprocessing and postprocessing. For more detail, please refer to Resnet50 model configuration example.
- Parameters
preprocess_fun (function) – Python pipeline function for preprocess.
args – Preprocess inputs. The length of ‘args’ should equal to the input parameters number of implemented python function.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
Examples
>>> from mindspore_serving.server import register >>> import numpy as np >>> def add_trans_datatype(instances): ... for instance in instances: ... x1 = instance[0] ... x2 = instance[0] ... yield x1.astype(np.float32), x2.astype(np.float32) >>> >>> register.declare_servable(servable_file="tensor_add.mindir", model_format="MindIR", with_batch_dim=False) >>> >>> @register.register_method(output_names=["y"]) # register add_cast method in add >>> def add_cast(x1, x2): ... x1, x2 = register.call_preprocess_pipeline(add_trans_datatype, x1, x2) # cast input to float32 ... y = register.call_servable(x1, x2) ... return y
- mindspore_serving.server.register.call_servable(*args)[source]
For method registration, define the inputs data of model inference.
Warning
‘call_servable’ is deprecated from version 1.5.0 and will be removed in a future version, use
mindspore_serving.server.register.add_stage
instead.Note
The length of ‘args’ should be equal to the inputs number of model.
- Parameters
args – Model’s inputs, the length of ‘args’ should be equal to the inputs number of model.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
Examples
>>> from mindspore_serving.server import register >>> register.declare_servable(servable_file="tensor_add.mindir", model_format="MindIR", with_batch_dim=False) >>> >>> @register.register_method(output_names=["y"]) # register add_common method in add >>> def add_common(x1, x2): ... y = register.call_servable(x1, x2) ... return y
- mindspore_serving.server.register.declare_model(model_file, model_format, with_batch_dim=True, options=None, without_batch_dim_inputs=None, context=None, config_file=None)[source]
Declare one model when importing servable_config.py of one servable.
Note
This interface should take effect when importing servable_config.py by the serving server. Therefore, it’s recommended that this interface be used globally in servable_config.py.
Warning
The parameter ‘options’ is deprecated from version 1.6.0 and will be removed in a future version, use parameter ‘context’ instead.
- Parameters
model_format (str) – Model format, “OM”, “MindIR” or “MindIR_Opt”, case ignored.
with_batch_dim (bool, optional) – Whether the first shape dim of the inputs and outputs of model is batch dim. Default: True.
options (Union[AclOptions, GpuOptions], optional) – Options of model, supports AclOptions or GpuOptions. Default: None.
context (Context) – Context is used to store environment variables during execution. Default: None.
without_batch_dim_inputs (Union[int, tuple[int], list[int]], optional) – Index of inputs that without batch dim when with_batch_dim is True. Default: None.
config_file (str, optional) – Config file for model to set mix precision inference. The file path can be an absolute path or a relative path to the directory in which servable_config.py resides. Default: None.
- Raises
RuntimeError – The type or value of the parameters are invalid.
- Returns
Model, identification of this model.
- mindspore_serving.server.register.declare_servable(servable_file, model_format, with_batch_dim=True, options=None, without_batch_dim_inputs=None)[source]
declare one model.
Warning
‘register.declare_servable’ is deprecated from version 1.5.0 and will be removed in a future version, use
mindspore_serving.server.register.declare_model
instead.- Parameters
model_format (str) – Model format, “OM” or “MindIR”, case ignored.
with_batch_dim (bool, optional) – Whether the first shape dim of the inputs and outputs of model is batch dim. Default: True.
options (Union[AclOptions, GpuOptions], optional) – Options of model, supports AclOptions or GpuOptions. Default: None.
without_batch_dim_inputs (Union[int, tuple[int], list[int]], optional) – Index of inputs that without batch dim when with_batch_dim is True. Default: None.
- Raises
RuntimeError – The type or value of the parameters are invalid.
- Returns
Model, identification of this model, used as input of add_stage.
- mindspore_serving.server.register.register_method(output_names)[source]
Define a method of the servable when importing servable_config.py of one servable. MindSpore Serving supports a service consisting of multiple python functions and multiple models.
Note
This interface should take effect when importing servable_config.py by the serving server. Therefore, it’s recommended that this interface be used globally in servable_config.py.
A method is an interface for clients to access the servable, and the servable can include one or more methods. This interface will defines the signatures and pipeline of the method.
The signatures includes the method name, input and outputs names of the method. When accessing a service, the client needs to specify the servable name, the method name, and provide one or more inference instances. Each instance specifies the input data by the input names and obtains the output data by the outputs names.
The pipeline consists of one or more stages, each stage can be a python function or a model. This is, a pipline can include one or more python functions and one or more models. In addition, the interface also defines the data flow of these stages.
- Parameters
output_names (Union[str, tuple[str], list[str]]) – The output names of method. The input names is the args names of the registered function.
- Raises
RuntimeError – The type or value of the parameters are invalid, or other error happened.
Examples
>>> from mindspore_serving.server import register >>> add_model = register.declare_model(model_file="tensor_add.mindir", model_format="MindIR") >>> sub_model = register.declare_model(model_file="tensor_sub.mindir", model_format="MindIR") >>> >>> @register.register_method(output_names=["y"]) # register predict method in servable >>> def predict(x1, x2, x3): # x1+x2-x3 ... y = register.add_stage(add_model, x1, x2, outputs_count=1) ... y = register.add_stage(sub_model, y, x3, outputs_count=1) ... return y
mindspore_serving.server.distributed
The interface to startup serving server with distributed servable. See how to configure and startup distributed model, please refer to MindSpore Serving-based Distributed Inference Service Deployment.
- mindspore_serving.server.distributed.declare_servable(rank_size, stage_size, with_batch_dim=True, without_batch_dim_inputs=None)[source]
declare distributed servable in servable_config.py.
- Parameters
rank_size (int) – Te rank size of the distributed model.
stage_size (int) – The stage size of the distributed model.
with_batch_dim (bool, optional) – Whether the first shape dim of the inputs and outputs of model is batch. Default: True.
without_batch_dim_inputs (Union[int, tuple[int], list[int]], optional) – Index of inputs that without batch dim when with_batch_dim is True. Default: None.
- Raises
RuntimeError – The type or value of the parameters are invalid.
- Returns
Model, identification of this model, used as input of add_stage.
Examples
>>> from mindspore_serving.server import distributed >>> model = distributed.declare_servable(rank_size=8, stage_size=1)
- mindspore_serving.server.distributed.start_servable(servable_directory, servable_name, rank_table_json_file, version_number=1, distributed_address='0.0.0.0:6200', wait_agents_time_in_seconds=0)[source]
Start up the servable named ‘servable_name’ defined in ‘servable_directory’.
- Parameters
servable_directory (str) – The directory where the servable is located in. There expects to has a directory named servable_name. For more detail: How to config Servable .
servable_name (str) – The servable name.
version_number (int, optional) – Servable version number to be loaded. The version number should be a positive integer, starting from 1, and 0 means to load the latest version. Default: 1.
rank_table_json_file (str) – The ranke table json file name.
distributed_address (str, optional) – The distributed worker address the worker agents linked to. Default: “0.0.0.0:6200”.
wait_agents_time_in_seconds (int, optional) – The maximum time in seconds the worker waiting ready of all agents, 0 means unlimited time. Default: 0.
- Raises
RuntimeError – Failed to start the distributed servable.
Examples
>>> import os >>> from mindspore_serving.server import distributed >>> >>> servable_dir = os.path.abspath(".") >>> distributed.start_servable(servable_dir, "matmul", startup_worker_agents="hccl_8p.json", \ ... distributed_address="127.0.0.1:6200")
- mindspore_serving.server.distributed.startup_agents(distributed_address, model_files, group_config_files=None, agent_start_port=7000, agent_ip=None, rank_start=None, dec_key=None, dec_mode='AES-GCM')[source]
Start up all needed agents on current machine.
- Parameters
distributed_address (str) – The distributed worker address the agents linked to.
model_files (Union[list[str], tuple[str]]) – All model files need in current machine, absolute path or path relative to this startup python script.
group_config_files (Union[list[str], tuple[str]], optional) – All group config files need in current machine, absolute path or path relative to this startup python script, default None, which means there are no configuration files. Default: None.
agent_start_port (int, optional) – The starting agent port of the agents link to worker. Default: 7000.
agent_ip (str, optional) – The local agent ip, if it’s None, the agent ip will be obtained from rank table file. Default None. Parameter agent_ip and parameter rank_start must have values at the same time, or both None at the same time. Default: None.
rank_start (int, optional) – The starting rank id of this machine, if it’s None, the rank ip will be obtained from rank table file. Default None. Parameter agent_ip and parameter rank_start must have values at the same time, or both None at the same time. Default: None.
dec_key (bytes, optional) – Byte type key used for decryption. The valid length is 16, 24, or 32. Default: None.
dec_mode (str, optional) – Specifies the decryption mode, take effect when dec_key is set. Option: ‘AES-GCM’ or ‘AES-CBC’. Default: ‘AES-GCM’.
- Raises
RuntimeError – Failed to start agents.
Examples
>>> import os >>> from mindspore_serving.server import distributed >>> model_files = [] >>> for i in range(8): >>> model_files.append(f"models/device{i}/matmul.mindir") >>> distributed.startup_agents(distributed_address="127.0.0.1:6200", model_files=model_files)