sciai.architecture.AdaptActivation
- class sciai.architecture.AdaptActivation(activation, a, scale)[source]
Adaptive activation function with trainable Parameter and fixed scale.
For details of adaptive activation function, please check Adaptive activation functions accelerate convergence in deep and physics-informed neural networks and Locally adaptive activationfunctions with slope recoveryfor deep and physics-informedneural network.
- Parameters
activation (Union[str, Cell, Primitive, function]) – Activation function.
a (Union[Number, Tensor, Parameter]) – Trainable parameter a.
scale (Union[Number, Tensor]) – Fixed scale parameter.
- Inputs:
x (Tensor) - The input of AdaptActivation.
- Outputs:
Tensor, activated output with the same type and shape as x.
- Raises
TypeError – If types are not correct.
- Supported Platforms:
GPU
CPU
Ascend
Examples
>>> import mindspore as ms >>> from mindspore import ops, nn >>> from sciai.architecture import AdaptActivation >>> a = ms.Tensor(0.1, ms.float32) >>> net = AdaptActivation(nn.Tanh(), a=a, scale=10) >>> x = ops.ones((2, 3), ms.float32) >>> y = net(x) >>> print(y) [[0.7615942 0.7615942 0.7615942] [0.7615942 0.7615942 0.7615942]]