# Copyright 2022-2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MonteCarloTreeSearch Class"""
# pylint: disable=W0235
import os
import mindspore as ms
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
import mindspore.ops as ops
from mindspore import Parameter, Tensor
from mindspore.ops import CustomRegOp, DataType
from mindspore.ops import operations as P
GPU_TREE_TYPE = ["GPUCommon"]
GPU_NODE_TYPE = ["GPUVanilla"]
CPU_TREE_TYPE = ["CPUCommon"]
CPU_NODE_TYPE = ["CPUVanilla", "CPUMuzero"]
[文档]class MCTS(nn.Cell):
"""
Monte Carlo Tree Search(MCTS) is a general search algorithm for some kinds of decision processes,
most notably those employed in software that plays board games, such as Go, chess. It was originally
proposed in 2006. A general MCTS has four phases:
1. Selection - selects the next node according to the selection policy (like UCT, RAVE, AMAF and etc.).
2. Expansion - unless the selection reached a terminal state, expansion adds a new child node to
the last node (leaf node) that is selected in Selection phase.
3. Simulation - performs an algorithm (random, neural net or other algorithms) to obtain the payoff.
4. Backpropagation - propagates the payoff for all visited node.
As the time goes by, these four phases of MCTS is evolved. AlphaGo introduced neural network to
MCTS, which makes the MCTS more powerful.
This class is a mindspore ops implementation MCTS. User can use provided MCTS algorithm, or develop
their own MCTS by derived base class (MonteCarloTreeNode) in c++.
Args:
env (Environment): It must be the subclass of Environment.
tree_type (str): The name of tree type.
node_type (str): The name of node type.
root_player (float): The root player, which should be less than the total number of player.
customized_func (AlgorithmFunc): Some algorithm specific class. For more detail, please have a look at
documentation of AlgorithmFunc.
device (str): The device type ``"CPU"`` , ``"GPU"`` . ``"Ascend"`` is not support yet.
args (Tensor): any values which will be the input of MctsCreation. Please following the table below
to provide the input value. These value will not be reset after invoke `restore_tree_data`.
has_init_reward (bool, optional): Whether pass the reward to each node during the node initialization.
Default: ``False``.
max_action (float, optional): The max number of action in environment. If the `max_action` is ``-1.0`` ,
the step in Environment will accept the last action. Otherwise, it will accept max_action number
of action. Default: ``-1.0`` .
max_iteration (int, optional): The max training iteration of MCTS. Default: ``1000`` .
+------------------------------+-----------------+-----------------------------+--------------------------+
| MCTS Tree Type | MCTS Node Type | Configuration Parameter | Notices |
+==============================+=================+=============================+==========================+
| CPUCommon | CPUVanilla | UCT const | UCT const is used to |
+------------------------------+-----------------+-----------------------------+ calculate UCT value in |
| GPUCommon | GPUVanilla | UCT const | Selection phase |
| | | | |
+------------------------------+-----------------+-----------------------------+--------------------------+
Examples:
>>> from mindspore import Tensor
>>> import mindspore as ms
>>> from mindspore_rl.environment import TicTacToeEnvironment
>>> from mindspore_rl.utils import VanillaFunc
>>> from mindspore_rl.utils import MCTS
>>> env = TicTacToeEnvironment(None)
>>> vanilla_func = VanillaFunc(env)
>>> uct = (Tensor(uct, ms.float32),)
>>> root_player = 0.0
>>> mcts = MCTS(env, "CPUCommon", "CPUVanilla", root_player, vanilla_func, device, args=uct)
>>> action, handle = mcts.mcts_search()
>>> print(action)
"""
def __init__(
self,
env,
tree_type,
node_type,
root_player,
customized_func,
device,
args,
has_init_reward=False,
max_action=-1.0,
max_iteration=1000,
):
super().__init__()
if not isinstance(device, str) or device not in ["GPU", "CPU"]:
raise ValueError(
"Device {} is illegal, it must in ['GPU','CPU'].".format(device)
)
self._check_params(AlgorithmFunc, customized_func, "customized_func")
self._check_params(int, max_iteration, "max_iteration")
if max_iteration <= 0:
raise ValueError(
f"max_iteration must be larger than 0, but got {max_iteration}"
)
current_path = os.path.dirname(os.path.normpath(os.path.realpath(__file__)))
so_path = current_path + "/libmcts_{}.so".format(device.lower())
state_size = 1.0
state_shape = env.observation_space.shape
for shape in state_shape:
state_size *= shape
if device == "GPU":
self._check_element(GPU_TREE_TYPE, tree_type, "MCTS", "tree_type")
self._check_element(GPU_NODE_TYPE, node_type, "MCTS", "node_type")
elif device == "CPU":
self._check_element(CPU_TREE_TYPE, tree_type, "MCTS", "tree_type")
self._check_element(CPU_NODE_TYPE, node_type, "MCTS", "node_type")
else:
raise ValueError("device does not support")
if root_player >= env.total_num_player() or root_player < 0:
raise ValueError(
"root_player {} is illegal, it needs to in range [0, {})".format(
root_player, env.total_num_player()
)
)
if node_type == "CPUMuzero":
mcts_creation_info = (
CustomRegOp("creation_kernel")
.input(0, "discount")
.input(1, "pb_c_base")
.input(2, "pb_c_init")
.input(3, "root_dirichlet_alpha")
.input(4, "root_exploration_fraction")
.output(0, "tree_handle")
.dtype_format(
DataType.None_None,
DataType.None_None,
DataType.None_None,
DataType.None_None,
DataType.None_None,
DataType.None_None,
)
.attr(
"tree_type",
"required",
"all",
value=self._check_params(str, tree_type, "tree_type"),
)
.attr(
"node_type",
"required",
"all",
value=self._check_params(str, node_type, "node_type"),
)
.attr(
"max_utility",
"required",
"all",
value=self._check_params(float, env.max_utility(), "max_utility"),
)
.attr(
"state_size",
"required",
"all",
value=self._check_params(float, state_size, "state_size"),
)
.attr(
"player",
"required",
"all",
value=self._check_params(float, root_player, "root_player"),
)
.attr(
"total_num_player",
"required",
"all",
value=self._check_params(
float, env.total_num_player(), "total_num_player"
),
)
.target(device)
.get_op_info()
)
else:
mcts_creation_info = (
CustomRegOp("creation_kernel")
.input(0, "uct_value")
.output(0, "tree_handle")
.dtype_format(DataType.None_None, DataType.None_None)
.attr(
"tree_type",
"required",
"all",
value=self._check_params(str, tree_type, "tree_type"),
)
.attr(
"node_type",
"required",
"all",
value=self._check_params(str, node_type, "node_type"),
)
.attr(
"max_utility",
"required",
"all",
value=self._check_params(float, env.max_utility(), "max_utility"),
)
.attr(
"state_size",
"required",
"all",
value=self._check_params(float, state_size, "state_size"),
)
.attr(
"player",
"required",
"all",
value=self._check_params(float, root_player, "root_player"),
)
.attr(
"total_num_player",
"required",
"all",
value=self._check_params(
float, env.total_num_player(), "total_num_player"
),
)
.target(device)
.get_op_info()
)
mcts_creation = ops.Custom(
"{}:MctsCreation".format(so_path),
(1,),
ms.int64,
"aot",
reg_info=mcts_creation_info,
)
mcts_creation.add_prim_attr("primitive_target", device)
self.tree_handle = mcts_creation(*args)
tree_handle_numpy = float(self.tree_handle.astype(ms.float32).asnumpy()[0])
self.tree_handle_list = [int(tree_handle_numpy)]
mcts_selection_info = (
CustomRegOp("selection_kernel")
.output(0, "visited_node")
.output(1, "last_action")
.dtype_format(DataType.None_None, DataType.None_None)
.attr(
"max_action",
"required",
"all",
value=self._check_params(float, max_action, "max_action"),
)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
if (max_action != -1) and (max_action != len(env.legal_action())):
raise ValueError(
"max_action must be -1 or the largest legal action of environment, but got ",
max_action,
)
if max_action != -1:
self.mcts_selection = ops.Custom(
"{}:MctsSelection".format(so_path),
((1,), (max_action,)),
(ms.int64, ms.int32),
"aot",
reg_info=mcts_selection_info,
)
else:
self.mcts_selection = ops.Custom(
"{}:MctsSelection".format(so_path),
((1,), (1,)),
(ms.int64, ms.int32),
"aot",
reg_info=mcts_selection_info,
)
self.mcts_selection.add_prim_attr("primitive_target", device)
mcts_expansion_info = (
CustomRegOp("expansion_kernel")
.input(0, "visited_node")
.input(1, "legal_action")
.input(2, "prior")
.input(3, "reward")
.output(0, "success")
.dtype_format(
DataType.None_None,
DataType.None_None,
DataType.None_None,
DataType.None_None,
DataType.None_None,
)
.attr(
"node_type",
"required",
"all",
value=self._check_params(str, node_type, "node_type"),
)
.attr(
"has_init_reward",
"required",
"all",
value=self._check_params(bool, has_init_reward, "has_init_reward"),
)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.mcts_expansion = ops.Custom(
"{}:MctsExpansion".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_expansion_info,
)
self.mcts_expansion.add_prim_attr("primitive_target", device)
mcts_backprop_info = (
CustomRegOp("backprop_kernel")
.input(0, "visited_node")
.input(1, "returns")
.output(0, "solved")
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.mcts_backpropagation = ops.Custom(
"{}:MctsBackpropagation".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_backprop_info,
)
self.mcts_backpropagation.add_prim_attr("primitive_target", device)
mcts_bestaction_info = (
CustomRegOp("bestaction_kernel")
.output(0, "action")
.dtype_format(DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.best_action = ops.Custom(
"{}:BestAction".format(so_path),
(1,),
(ms.int32),
"aot",
reg_info=mcts_bestaction_info,
)
self.best_action.add_prim_attr("primitive_target", device)
mcts_outcome_info = (
CustomRegOp("outcome_kernel")
.input(0, "visited_node")
.input(1, "reward")
.output(0, "success")
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.update_leafnode_outcome = ops.Custom(
"{}:UpdateLeafNodeOutcome".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_outcome_info,
)
self.update_leafnode_outcome.add_prim_attr("primitive_target", device)
mcts_terminal_info = (
CustomRegOp("terminal_kernel")
.input(0, "visited_node")
.input(1, "terminal")
.output(0, "success")
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.update_leafnode_terminal = ops.Custom(
"{}:UpdateLeafNodeTerminal".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_terminal_info,
)
self.update_leafnode_terminal.add_prim_attr("primitive_target", device)
mcts_leafstate_info = (
CustomRegOp("leafstate_kernel")
.input(0, "visited_node")
.input(1, "state")
.output(0, "success")
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.update_leafnode_state = ops.Custom(
"{}:UpdateLeafNodeState".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_leafstate_info,
)
self.update_leafnode_state.add_prim_attr("primitive_target", device)
mcts_rootstate_info = (
CustomRegOp("rootstate_kernel")
.input(0, "state")
.output(0, "success")
.dtype_format(DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.update_root_state = ops.Custom(
"{}:UpdateRootState".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_rootstate_info,
)
self.update_root_state.add_prim_attr("primitive_target", device)
mcts_getlast_info = (
CustomRegOp("getlast_kernel")
.input(0, "visited_node")
.output(0, "state")
.dtype_format(DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.get_last_state = ops.Custom(
"{}:GetLastState".format(so_path),
state_shape,
(ms.float32),
"aot",
reg_info=mcts_getlast_info,
)
self.get_last_state.add_prim_attr("primitive_target", device)
mcts_globalvar_info = (
CustomRegOp("globalvar_kernel")
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.update_global_variable = ops.Custom(
"{}:UpdateGlobalVariable".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_globalvar_info,
)
self.update_global_variable.add_prim_attr("primitive_target", device)
mcts_destroy_info = (
CustomRegOp("destroy_kernel")
.input(0, "handle")
.output(0, "success")
.dtype_format(DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.destroy_tree = ops.Custom(
"{}:DestroyTree".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_destroy_info,
)
self.destroy_tree.add_prim_attr("primitive_target", device)
mcts_restore_info = (
CustomRegOp("restore_kernel")
.input(0, "dummy_handle")
.output(0, "success")
.dtype_format(DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.restore_tree = ops.Custom(
"{}:RestoreTree".format(so_path),
(1,),
(ms.bool_),
"aot",
reg_info=mcts_restore_info,
)
self.restore_tree.add_prim_attr("primitive_target", device)
mcts_get_value_info = (
CustomRegOp("get_value_kernel")
.input(0, "dummy_handle")
.output(0, "value")
.output(1, "norm_explore_count")
.dtype_format(DataType.None_None, DataType.None_None, DataType.None_None)
.attr(
"tree_handle",
"required",
"all",
value=self._check_params(float, tree_handle_numpy, "tree_handle"),
)
.target(device)
.get_op_info()
)
self.get_root_info = ops.Custom(
"{}:GetRootInfo".format(so_path),
((1,), (len(env.legal_action()),)),
(ms.float32, ms.float32),
"aot",
reg_info=mcts_get_value_info,
)
self.get_root_info.add_prim_attr("primitive_target", device)
self.depend = P.Depend()
# Add side effect annotation
self.mcts_expansion.add_prim_attr("side_effect_mem", True)
self.mcts_backpropagation.add_prim_attr("side_effect_mem", True)
self.update_leafnode_outcome.add_prim_attr("side_effect_mem", True)
self.update_leafnode_terminal.add_prim_attr("side_effect_mem", True)
self.update_leafnode_state.add_prim_attr("side_effect_mem", True)
self.update_root_state.add_prim_attr("side_effect_mem", True)
self.destroy_tree.add_prim_attr("side_effect_mem", True)
self.restore_tree.add_prim_attr("side_effect_mem", True)
self.update_global_variable.add_prim_attr("side_effect_mem", True)
self.zero = Tensor(0, ms.int32)
self.zero_float = Tensor(0, ms.float32)
self.true = Tensor(True, ms.bool_)
self.false = Tensor(False, ms.bool_)
self.env = env
self.tree_type = tree_type
self.node_type = node_type
self.max_iteration = Tensor(max_iteration, ms.int32)
self.max_action = max_action
self.customized_func = customized_func
[文档] @ms.jit
def mcts_search(self, *args):
"""
mcts_search is the main function of MCTS. Invoke this function will return the best
action of current state.
Args:
*args (Tensor): The variable which updates during each iteration. They will be restored
after invoking `restore_tree_data`. The input value needs to match provied
algorithm.
Returns:
- action (mindspore.int32), The action which is returned by monte carlo tree search.
- handle (mindspore.int64), The unique handle of mcts tree.
"""
expanded = self.false
reward = self.zero_float
solved = self.false
# Create a replica of environment
new_state = self.env.save()
self.update_root_state(new_state)
self.update_global_variable(*args)
i = self.zero
while i < self.max_iteration:
# 1. Interact with the replica of environment, and update the latest state
# and its reward
visited_node, last_action = self.mcts_selection()
last_state = self.get_last_state(visited_node)
if expanded:
self.env.load(last_state)
new_state, reward, _ = self.env.step(last_action)
else:
new_state, reward, _ = self.env.load(last_state)
self.update_leafnode_state(visited_node, new_state)
# 2. Calculate the legal action and their probability of the latest state
legal_action = self.env.legal_action()
prior = self.customized_func.calculate_prior(new_state, legal_action)
if not self.env.is_terminal():
expanded = self.true
self.mcts_expansion(visited_node, legal_action, prior, reward)
else:
self.update_leafnode_outcome(visited_node, reward)
self.update_leafnode_terminal(visited_node, self.true)
# 3. Calculate the return of the latest state, it could obtain from neural network
# or play randomly
returns = self.customized_func.simulation(new_state)
solved = self.mcts_backpropagation(visited_node, returns)
if solved:
break
i += 1
action = self.best_action()
return action, self.tree_handle
[文档] def restore_tree_data(self, handle):
r"""
restore_tree_data will restore all the data in the tree, back to the initial state.
Args:
handle (mindspore.int64): The unique handle of mcts tree.
Returns:
success (mindspore.bool\_), Whether restore is successful.
"""
self._check_element(
self.tree_handle_list, handle, "restore_tree_data", "handle"
)
return self.restore_tree(handle)
[文档] def destroy(self, handle):
r"""
destroy will destroy current tree. Please call this function ONLY when
do not use this tree any more.
Args:
handle (mindspore.int64): The unique handle of mcts tree.
Returns:
success (mindspore.bool\_), Whether destroy is successful.
"""
self._check_element(self.tree_handle_list, handle, "destroy", "handle")
ret = self.destroy_tree(handle)
self.tree_handle_list.pop()
return ret
@ms.jit
def _get_root_information(self, dummpy_handle):
"""Does not support yet"""
return self.get_root_info(dummpy_handle)
def _check_params(self, check_type, input_value, name):
"""Check params type for input"""
if not isinstance(input_value, check_type):
raise TypeError(
f"Input value {name} must be {str(check_type)}, but got {type(input_value)}"
)
return input_value
def _check_element(self, expected_element, input_element, func_name, arg_name):
"""Check whether input_elemnt is in expected_element"""
if input_element not in expected_element:
raise ValueError(
f"The input {arg_name} of {func_name} must be in {expected_element}, but got '{input_element}'"
)
[文档]class AlgorithmFunc(nn.Cell):
"""
This is the base class for user to customize algorithm in MCTS. User need to
inherit this base class and implement all the functions with SAME input and output.
"""
def __init__(self):
super().__init__()
[文档] def calculate_prior(self, new_state, legal_action):
"""
Calculate prior of the input legal actions.
Args:
new_state (mindspore.float32): The state of environment.
legal_action (mindspore.int32): The legal action of environment
Returns:
prior (mindspore.float32), The probability (or prior) of all the input legal actions.
"""
raise NotImplementedError("You must implement this function")
[文档] def simulation(self, new_state):
"""
Simulation phase in MCTS. It takes the state as input and return the rewards.
Args:
new_state (mindspore.float32): The state of environment.
Returns:
rewards (mindspore.float32), The results of simulation.
"""
raise NotImplementedError("You must implement this function")
[文档]class VanillaFunc(AlgorithmFunc):
"""
This is the customized algorithm for VanillaMCTS. The prior of each legal action is uniform
distribution and it plays randomly to obtain the result of simulation.
Args:
env (Environment): The input environment.
Examples:
>>> env = TicTacToeEnvironment(None)
>>> vanilla_func = VanillaFunc(env)
>>> legal_action = env.legal_action()
>>> prior = vanilla_func.calculate_prior(legal_action, legal_action)
>>> print(prior)
"""
def __init__(self, env):
super().__init__()
self.minus_one = Tensor(-1, ms.int32)
self.zero = Tensor(0, ms.int32)
self.ones_like = P.OnesLike()
self.categorical = msd.Categorical()
self.env = env
self.false = Tensor(False, ms.bool_)
[文档] def calculate_prior(self, new_state, legal_action):
"""
The functionality of calculate_prior is to calculate prior of the input legal actions.
Args:
new_state (mindspore.float32): The state of environment.
legal_action (mindspore.int32): The legal action of environment
Returns:
prior (mindspore.float32), The probability (or prior) of all the input legal actions.
"""
invalid_action_num = (legal_action == -1).sum()
prior = self.ones_like(legal_action).astype(ms.float32) / (
len(legal_action) - invalid_action_num
)
return prior
[文档] def simulation(self, new_state):
"""
The functionality of simulation is to calculate reward of the input state.
Args:
new_state (mindspore.float32): The state of environment.
Returns:
rewards (mindspore.float32), The results of simulation.
"""
_, reward, done = self.env.load(new_state)
while not done:
legal_action = self.env.legal_action()
mask = legal_action == -1
invalid_action_num = (legal_action == -1).sum()
prob = self.ones_like(legal_action).astype(ms.float32) / (
len(legal_action) - invalid_action_num
)
prob[mask] = 0
action = self.categorical.sample((), prob)
new_state, reward, done = self.env.step(legal_action[action])
return reward
class _SupportToScalar(nn.Cell):
"""
Support to scalar is used in Muzero, it will decompressed an Tensor to scalar.
"""
def __init__(self, value_min: float, value_max: float, eps: float = 0.001):
super().__init__()
self.eps = eps
self.support = nn.Range(value_min, value_max + 1)()
self.reduce_sum = P.ReduceSum()
self.sign = P.Sign()
self.sqrt = P.Sqrt()
self.absolute = P.Abs()
def construct(self, logits):
"""Calculate the decompressed value"""
probabilities = nn.Softmax()(logits)
v = self.reduce_sum(probabilities * self.support, -1)
# Inverting the value scaling (defined in https://arxiv.org/abs/1805.11593)
decompressed_value = self.sign(v) * (
(
(self.sqrt(1 + 4 * self.eps * (self.absolute(v) + 1 + self.eps)) - 1)
/ (2 * self.eps)
)
** 2
- 1
)
return decompressed_value
class MuzeroFunc(AlgorithmFunc):
"""
This is the customized algorithm for MuzeroCTS. The prior of each legal action and predicted value
are calculated by neural network.
"""
def __init__(self, net):
super().__init__()
self.predict_net = net
self.decompressed_value = _SupportToScalar(-300, 300)
self.value = Parameter(
Tensor([0], ms.float32), requires_grad=False, name="value"
)
self.false = Tensor(False, ms.bool_)
def calculate_prior(self, new_state, legal_action):
"""
The functionality of calculate_prior is to calculate prior of the input legal actions.
Args:
new_state (mindspore.float32): The state of environment.
legal_action (mindspore.int32): The legal action of environment.
Returns:
prior (mindspore.float32), The probability (or prior) of all the input legal actions.
"""
policy, value = self.predict_net(new_state)
self.value = self.decompressed_value(value)
return policy
def simulation(self, new_state):
"""
The functionality of simulation is to calculate reward of the input state.
Args:
new_state (mindspore.float32): The state of environment.
Returns:
rewards (mindspore.float32), The results of simulation.
"""
return self.value