mindspore_rec
MindSpore推荐领域深度模型的训练加速库。
- class mindspore_rec.RecModel(network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, eval_indexes=None, amp_level='O0', boost_level='O0')[源代码]
推荐模型训练的高层API封装,提供了在线训练等功能接口。
- 参数:
network (Cell) - 用于训练或推理的神经网络。
loss_fn (Cell) - 损失函数。如果 loss_fn 为None,network 中需要进行损失函数计算,必要时也需要进行并行计算。默认值:None。
optimizer (Cell) - 用于更新网络权重的优化器。如果 optimizer 为None, network 中需要进行反向传播和网络权重更新。默认值:None。
metrics (Union[dict, set]) - 用于模型评估的一组评价函数。例如:{‘accuracy’, ‘recall’}。默认值:None。
eval_network (Cell) - 用于评估的神经网络。未定义情况下,Model 会使用 network 和 loss_fn 封装一个 eval_network 。默认值:None。
eval_indexes (list) - 在定义 eval_network 的情况下使用。如果 eval_indexes 为默认值None,Model 会将 eval_network 的所有输出传给 metrics 。如果配置 eval_indexes ,必须包含三个元素,分别为损失值、预测值和标签在 eval_network 输出中的位置,此时,损失值将传给损失评价函数,预测值和标签将传给其他评价函数。推荐使用评价函数的 mindspore.train.Metric.set_indexes 代替 eval_indexes 。默认值:None。
amp_level (str) - mindspore.amp.build_train_network 的可选参数 level , level 为混合精度等级,该参数支持[“O0”, “O2”, “O3”, “auto”]。默认值:”O0”。
“O0”: 不变化。
“O2”: 将网络精度转为float16,BatchNorm保持float32精度,使用动态调整损失缩放系数(loss scale)的策略。
“O3”: 将网络精度(包括BatchNorm)转为float16,不使用损失缩放策略。
auto: 为不同处理器设置专家推荐的混合精度等级,如在GPU上设为”O2”,在Ascend上设为”O3”。该设置方式可能在部分场景下不适用,建议用户根据具体的网络模型自定义设置 amp_level 。
在GPU上建议使用”O2”,在Ascend上建议使用”O3”。 关于 amp_level 详见 mindpore.amp.build_train_network。
boost_level (str) - mindspore.boost 的可选参数,为boost模式训练等级。支持[“O0”, “O1”, “O2”]. 默认值:”O0”。
“O0”: 不变化。
“O1”: 启用boost模式,性能将提升约20%,准确率保持不变。
“O2”: 启用boost模式,性能将提升约30%,准确率下降小于3%。
如果想自行配置boost模式,可以将 boost_config_dict 设置为 boost.py。 为使功能生效,需要同时设置optimizer、eval_network或metric参数。 注意:当前默认开启的优化仅适用部分网络,并非所有网络都能获得相同收益。建议在图模式+Ascend平台下开启该模式,同时为了获取更好的加速效果,请参考文档配置boost_config_dict。
- online_train(train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=1)[源代码]
启动在线训练。
说明
如果 dataset_sink_mode 配置为True,数据将被送到处理器中。如果处理器是Ascend,数据特征将被逐一传输,每次数据传输的上限是256M。
如果 dataset_sink_mode 配置为True,仅在每个epoch结束时调用Callback实例的step_end方法。
如果计算设备指定为CPU,则只支持非数据下沉模式。
与离线数据集相比,在线数据集是无界数据流,训练过程会持续进行。
- 参数:
train_dataset (Dataset) - 一个用于在线训练的无界训练数据集迭代器。一个训练数据集迭代器。如果定义了 loss_fn ,则数据和标签会被分别传给 network 和 loss_fn ,此时数据集需要返回一个元组(data, label)。如果数据集中有多个数据或者标签,可以设置 loss_fn 为None,并在 network 中实现损失函数计算,此时数据集返回的所有数据组成的元组(data1, data2, data3, …)会传给network。
callbacks (Optional[list[Callback], Callback]) - 训练过程中需要执行的回调对象或者回调对象列表。默认值:None。
dataset_sink_mode (bool) - 数据是否直接下沉至处理器进行处理。使用CPU处理器时,模型训练流程将以非下沉模式执行。默认值:True。
sink_size (int) - 控制每次数据下沉的数据量。dataset_sink_mode 为False时 sink_size 无效。默认值:1。