mindsponge.metrics.BalancedMSE ======================================== .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg :target: https://gitee.com/mindspore/mindscience/blob/master/MindSPONGE/docs/api/api_python/metrics/mindsponge.metrics.BalancedMSE.rst :alt: 查看源文件 .. py:class:: mindsponge.metrics.BalancedMSE(first_break, last_break, num_bins, beta=0.99, reducer_flag=False) 计算预测值和真实值之间的均衡平方误差,适用于回归任务中标签不平衡的场景。详细实现过程参考: `Ren, Jiawei, et al. 'Balanced MSE for Imbalanced Visual Regression' <https://arxiv.org/abs/2203.16427>`_ 。 .. math:: L =-\log \mathcal{N}(\boldsymbol{y} ; \boldsymbol{y}_{\text {pred }}, \sigma_{\text {noise }}^{2} \mathrm{I})+\log \sum_{i=1}^{N} p_{\text {train }}(\boldsymbol{y}_{(i)}) \cdot \mathcal{N}(\boldsymbol{y}_{(i)} ; \boldsymbol{y}_{\text {pred }}, \sigma_{\text {noise }}^{2} \mathrm{I}) 参数: - **first_break** (float) - bin划分的起始位置。 - **last_break** (float) - bin划分的结束位置。 - **num_bins** (int) - 划分bin的数目。 - **beta** (float) - 滑动平均的系数。默认值: ``0.99``。 - **reducer_flag** (bool) - 是否对多卡的标签值做聚合。默认值: ``False``。 输入: - **prediction** (Tensor) - 模型预测值,shape为 :math:`(batch\_size, ndim)` 。 - **target** (Tensor) - 标签值,shape为 :math:`(batch\_size, ndim)` 。 输出: Tensor。shape为 :math:`(batch\_size, ndim)` 。