sponge.metrics.MetricCV
- class sponge.metrics.MetricCV(colvar: Colvar)[source]
Metric for collective variables (CVs)
- get_unit(units: Units = None)[source]
Return unit of the collective variables.
- Parameters
units (Units, optional) – Units of the collective variables. Default:
None
.
- update(coordinate: Tensor, pbc_box: Tensor = None, energy: Tensor = None, force: Tensor = None, potentials: Tensor = None, total_bias: Tensor = None, biases: Tensor = None)[source]
update the state information of the system.
- Parameters
coordinate (Tensor) – Tensor of shape (B, A, D). Data type is float. Position coordinate of atoms in system.
pbc_box (Tensor, optional) – Tensor of shape (B, D). Data type is float. Tensor of PBC box. Default:
None
.energy (Tensor, optional) – Tensor of shape (B, 1). Data type is float. Total potential energy of the simulation system. Default:
None
.force (Tensor, optional) – Tensor of shape (B, A, D). Data type is float. Force on each atoms of the simulation system. Default:
None
.potentials (Tensor, optional) – Tensor of shape (B, U). Data type is float. Original potential energies from force field. Default:
None
.total_bias (Tensor, optional) – Tensor of shape (B, 1). Data type is float. Total bias energy for reweighting. Default:
None
.biases (Tensor, optional) – Tensor of shape (B, V). Data type is float. Original bias potential energies from bias functions. Default:
None
.
Note
B: Batchsize, i.e. number of walkers in simulation.
A: Number of atoms of the simulation system.
D: Dimension of the space of the simulation system. Usually is 3.
U: Number of potential energies.
V: Number of bias potential energies.
- Supported Platforms:
Ascend
GPU
Examples
>>> from mindspore import Tensor >>> from sponge.colvar import Distance >>> from sponge.metrics import MetricCV >>> cv = Distance([0,1]) >>> coordinate = Tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]) >>> metric = MetricCV(cv) >>> metric.update(coordinate) >>> print(metric.eval()) [1.]