Source code for sponge.control.thermostat.berendsen

# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
#                       Peking University &
#                       Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Berendsen thermostat"""

from typing import Tuple

from mindspore import Tensor
from mindspore import ops

from .thermostat import Thermostat, _thermostat_register
from ...system import Molecule
from ...function import get_arguments


[docs]@_thermostat_register('berendsen') class BerendsenThermostat(Thermostat): r""" A Berendsen (weak coupling) thermostat module, which is a subclass of :class:`sponge.control.Thermostat`. Reference Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.. Molecular Dynamics with Coupling to an External Bath [J]. The Journal of Chemical Physics, 1984, 81(8). Args: system (:class: `sponge.system.Molecule`): Simulation system. temperature (float, optional): Reference temperature :math:`T_{ref}` in unit Kelvin for temperature coupling. Default: ``300.0``. control_step (int, optional): Step interval for controller execution. Default: ``1``. time_constant (float, optional): Time constant :math:`\tau_T` in unit picosecond for temperature coupling. Default: ``0.5``. scale_min (float, optional): The minimum value to clip the velocity scale factor. Default: ``0.8``. scale_max (float, optional): The maximum value to clip the velocity scale factor. Default: ``1.25``. Inputs: - **coordinate** (Tensor) - Coordinate. Tensor of shape :math:`(B, A, D)`. Data type is float. Here :math:`B` is the number of walkers in simulation, :math:`A` is the number of atoms and :math:`D` is the spatial dimension of the simulation system, which is usually 3. - **velocity** (Tensor) - Velocity. Tensor of shape :math:`(B, A, D)`. Data type is float. - **force** (Tensor) - Force. Tensor of shape :math:`(B, A, D)`. Data type is float. - **energy** (Tensor) - Energy. Tensor of shape :math:`(B, 1)`. Data type is float. - **kinetics** (Tensor) - Kinetics. Tensor of shape :math:`(B, D)`. Data type is float. - **virial** (Tensor) - Virial. Tensor of shape :math:`(B, D)`. Data type is float. - **pbc_box** (Tensor) - Pressure boundary condition box. Tensor of shape :math:`(B, D)`. Data type is float. - **step** (int) - Simulation step. Default: ``0``. Outputs: - coordinate, Tensor of shape :math:`(B, A, D)`. Coordinate. Data type is float. - velocity, Tensor of shape :math:`(B, A, D)`. Velocity. Data type is float. - force, Tensor of shape :math:`(B, A, D)`. Force. Data type is float. - energy, Tensor of shape :math:`(B, 1)`. Energy. Data type is float. - kinetics, Tensor of shape :math:`(B, D)`. Kinetics. Data type is float. - virial, Tensor of shape :math:`(B, D)`. Virial. Data type is float. - pbc_box, Tensor of shape :math:`(B, D)`. Periodic boundary condition box. Data type is float. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> from sponge import Molecule >>> from sponge.control import BerendsenThermostat >>> system = Molecule(template='water.tip3p.yaml') >>> controller = BerendsenThermostat(system) """ def __init__(self, system: Molecule, temperature: float = 300, control_step: int = 1, time_constant: float = 0.5, scale_min: float = 0.8, scale_max: float = 1.25, **kwargs, ): super().__init__( system=system, temperature=temperature, control_step=control_step, time_constant=time_constant, ) self._kwargs = get_arguments(locals(), kwargs) self.scale_min = scale_min self.scale_max = scale_max self.ratio = self.control_step * self.time_step / self.time_constant
[docs] def set_time_step(self, dt): r""" Set simulation time step Args: dt (float): Simulation time step """ self.time_step = dt self.ratio = self.control_step * self.time_step / self.time_constant return self
def construct(self, coordinate: Tensor, velocity: Tensor, force: Tensor, energy: Tensor, kinetics: Tensor, virial: Tensor = None, pbc_box: Tensor = None, step: int = 0, ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: r""" Control the temperature of the simulation system using Berendsen (weak coupling) thermostat. Args: coordinate (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. velocity (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. force (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. energy (Tensor): Tensor of shape :math:`(B, 1)`. Data type is float. kinetics (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. virial (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. pbc_box (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. step (int): Simulation step. Default: ``0``. Returns: - **coordinate** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **velocity** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **force** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **energy** (Tensor) - Tensor of shape :math:`(B, 1)`. Data type is float. - **kinetics** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. - **virial** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. - **pbc_box** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. Note: :math:`B` is the number of walkers in simulation. :math:`A` is the number of atoms. :math:`D` is the spatial dimension of the simulation system. Usually is 3. """ if self.control_step == 1 or step % self.control_step == 0: scale = self.velocity_scale(kinetics, self.get_ref_kinetics(), self.ratio) scale = ops.clip_by_value(scale, self.scale_min, self.scale_max) velocity *= scale return coordinate, velocity, force, energy, kinetics, virial, pbc_box