Source code for sponge.control.barostat.barostat

# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
#                       Peking University &
#                       Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Barostat
"""

from typing import Union, Tuple, List
from numpy import ndarray

import mindspore as ms
import mindspore.numpy as msnp
from mindspore import Tensor, Parameter
from mindspore.ops import functional as F

from .. import Controller
from ...system import Molecule
from ...function import get_ms_array, get_arguments

_BAROSTAT_BY_KEY = dict()


def _barostat_register(*aliases):
    """Return the alias register."""
    def alias_reg(cls):
        name = cls.__name__
        name = name.lower()
        if name not in _BAROSTAT_BY_KEY:
            _BAROSTAT_BY_KEY[name] = cls

        for alias in aliases:
            if alias not in _BAROSTAT_BY_KEY:
                _BAROSTAT_BY_KEY[alias] = cls

        return cls

    return alias_reg


[docs]class Barostat(Controller): r""" Base class for barostat module in MindSPONGE, which is a subclass of :class:`sponge.control.Controller`. The :class:`sponge.control.Barostat` module is used for pressure coupling. It controls the atomic coordinates and the size of the PBC box of the system during the simulation process. Args: system (:class:`sponge.system.Molecule`): Simulation system. pressure (float, optional): Reference pressure :math:`P_{ref}` in unit :math:`bar` for pressure coupling. Default: ``1.0``. anisotropic (bool, optional): Whether to perform anisotropic pressure control. Default: ``False``. control_step (int, optional): Step interval for controller execution. Default: ``1.0``. compressibility (float, optional): Isothermal compressibility :math:`\beta` in unit :math:`bar^{-1}`. Default: ``4.6e-5``. time_constant (float, optional): Time constant :math:`\tau_p` in unit picosecond for pressure coupling. Default: ``1.0``. Inputs: - **coordinate** (Tensor) - Coordinate. Tensor of shape :math:`(B, A, D)`. Data type is float. Here :math:`B` is the number of walkers in simulation, :math:`A` is the number of atoms and :math:`D` is the spatial dimension of the simulation system, which is usually 3. - **velocity** (Tensor) - Velocity. Tensor of shape :math:`(B, A, D)`. Data type is float. - **force** (Tensor) - Force. Tensor of shape :math:`(B, A, D)`. Data type is float. - **energy** (Tensor) - Energy. Tensor of shape :math:`(B, 1)`. Data type is float. - **kinetics** (Tensor) - Kinetics. Tensor of shape :math:`(B, D)`. Data type is float. - **virial** (Tensor) - Virial. Tensor of shape :math:`(B, D)`. Data type is float. - **pbc_box** (Tensor) - Pressure boundary condition box. Tensor of shape :math:`(B, D)`. Data type is float. - **step** (int) - Simulation step. Default: ``0``. Outputs: - coordinate, Tensor of shape :math:`(B, A, D)`. Coordinate. Data type is float. - velocity, Tensor of shape :math:`(B, A, D)`. Velocity. Data type is float. - force, Tensor of shape :math:`(B, A, D)`. Force. Data type is float. - energy, Tensor of shape :math:`(B, 1)`. Energy. Data type is float. - kinetics, Tensor of shape :math:`(B, D)`. Kinetics. Data type is float. - virial, Tensor of shape :math:`(B, D)`. Virial. Data type is float. - pbc_box, Tensor of shape :math:`(B, D)`. Periodic boundary condition box. Data type is float. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> from sponge import Molecule >>> from sponge.control import Barostat >>> system = Molecule(template='water.tip3p.yaml') >>> controller = Barostat(system) """ def __init__(self, system: Molecule, pressure: float = 1, anisotropic: bool = False, control_step: int = 1, compressibility: float = 4.6e-5, time_constant: float = 1., **kwargs, ): super().__init__( system=system, control_step=control_step, ) self._kwargs = get_arguments(locals(), kwargs) self.anisotropic = anisotropic self.sens = Tensor(1e8, ms.float32) self.inv_sens = msnp.reciprocal(self.sens) self.size_error_info = f'The size of pressure must be equal to 1 or ' \ f'the number of multiple walker ({self.num_walker}) but got ' pressure = self._get_mw_tensor(pressure, 'pressure') self.ref_press = Parameter(pressure, name='ref_press', requires_grad=False) # isothermal compressibility self.beta = get_ms_array(compressibility, ms.float32) # \tau_t self.time_constant = self._get_mw_tensor(time_constant, 'time_constant') self.shape = (self.num_walker, self.dimension) self.change_accumulation = Parameter(msnp.zeros(self.shape), name='change_accumulation', requires_grad=False) self.critical_change = 1e-6 @property def pressure(self) -> Tensor: r""" Reference pressure. Returns: Tensor, reference pressure. """ return self.identity(self.ref_press) @property def compressibility(self) -> Tensor: r""" Isothermal compressibility. Returns: Tensor, isothermal compressibility.""" return self.beta
[docs] def set_pressure(self, pressure: Union[float, ndarray, Tensor, List[float]]) -> Tensor: r""" Set the value of reference pressure. The size of the pressure array must be equal to current pressure. Args: pressure (Union[float, ndarray, Tensor, List[float]]): pressure. Returns: Tensor, reference pressure. """ return F.assign(self.ref_press, self._get_mw_tensor(pressure, 'pressure'))
[docs] def reconstruct_pressure(self, pressure: Union[float, ndarray, Tensor, List[float]]): r""" Reset the reference pressure. Args: pressure (Union[float, ndarray, Tensor, List[float]]): pressure. Returns: :class:`sponge.control.Barostat`, current object of barostat. """ pressure = self._get_mw_tensor(pressure, 'pressure') self.ref_press = Parameter(pressure, name='ref_press', requires_grad=False) return self
[docs] def pressure_scale(self, sim_press: Tensor, ref_press: Tensor, ratio: float = 1) -> Tensor: r""" Calculate the coordinate scale factor for pressure coupling. Args: sim_press (Tensor): Current pressure. ref_press (Tensor): Reference pressure. ratio (float, optional): Ratio of pressure coupling. Default: ``1.0`` Returns: Tensor, scale factor for pressure coupling. """ delta_p = ref_press - sim_press change = - ratio * self.beta * delta_p # If the change is too small, the float32 data will not be able to represent the scale. # Therefore, the small changes will be accumulated: # (1 + x) ^ n \approx 1 + nx, when x << 1 # When the total change accumulates to a critical value, then the coordinate and PBC box will be scaled. change += self.change_accumulation mask = msnp.abs(change) > self.critical_change scale = msnp.where(mask, 1+change, 1.) change = msnp.where(mask, 0., change) scale = F.depend(scale, F.assign(self.change_accumulation, change)) return scale
def construct(self, coordinate: Tensor, velocity: Tensor, force: Tensor, energy: Tensor, kinetics: Tensor, virial: Tensor = None, pbc_box: Tensor = None, step: int = 0, ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: r""" Control the pressure of the simulation system. Args: coordinate (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. velocity (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. force (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. energy (Tensor): Tensor of shape :math:`(B, 1)`. Data type is float. kinetics (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. virial (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. pbc_box (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. step (int): Simulation step. Default: ``0``. Returns: - **coordinate** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **velocity** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **force** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **energy** (Tensor) - Tensor of shape :math:`(B, 1)`. Data type is float. - **kinetics** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. - **virial** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. - **pbc_box** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. Note: :math:`B` is the number of walkers in simulation. :math:`A` is the number of atoms. :math:`D` is the spatial dimension of the simulation system. Usually is 3. """ raise NotImplementedError