Source code for sponge.colvar.function.transform

# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
#                       Peking University &
#                       Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Transformation of Colvar
"""

from typing import Tuple, Callable

from mindspore import Tensor

from ..get import get_colvar
from ..colvar import Colvar


[docs]class TransformCV(Colvar): r""" Transformation of the values of the a collective variable :math:`s(R)` using a specific functions :math:`f(x)`. .. math:: s' = f[s(R)] Args: colvar (Colvar): Collective variables (CVs) :math:`s(R)`. function (Callable): Transformation function :math:`f(x)`. periodic (bool): Whether the transformed collective variables is periodic. Default: ``False``. shape (Tuple[int]): Shape of the transformed collective variables. If None is given, then it will be assigned to the shape of the original `colvar`. Default: ``None``. unit (str): Unit of the collective variables. Default: ``None``. NOTE: This is not the `Units` Cell that wraps length and energy. name (str): Name of the collective variables. Default: 'transform'. Supported Platforms: ``Ascend`` ``GPU`` """ def __init__(self, colvar: Colvar, function: Callable, periodic: bool = False, shape: Tuple[int] = None, unit: str = None, name: str = 'transform', ): super().__init__( periodic=periodic, unit=unit, name=name, ) self.colvar = get_colvar(colvar) self.function = function self.set_pbc(self.colvar.use_pbc) if shape is None: shape = self.colvar.shape self._set_shape(shape) self._dtype = self.colvar.dtype
[docs] def set_pbc(self, use_pbc: bool): """set whether to use periodic boundary condition""" super().set_pbc(use_pbc) self.colvar.set_pbc(use_pbc) return self
def construct(self, coordinate: Tensor, pbc_box: Tensor = None): r"""return the cosine value of the collective variables (CVs). Args: coordinate (Tensor): Tensor of shape `(B, A, D)`. Data type is float. Position coordinate of colvar in system. `B` means batchsize, i.e. number of walkers in simulation. `A` means number of colvar in system. `D` means dimension of the simulation system. Usually is 3. pbc_box (Tensor): Tensor of shape `(B, D)`. Data type is float. Tensor of PBC box. Default: ``None``. Returns: cos_cv (Tensor): Tensor of shape `(B, S_1, S_2, ..., S_n)`. Data type is float. `{S_i}` means dimensions of collective variables. """ colvar = self.colvar(coordinate, pbc_box) return self.function(colvar)