Source code for sponge.colvar.atoms.group

# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
#                       Peking University &
#                       Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Atom group
"""

from typing import Union, List, Tuple
from numpy import ndarray
from mindspore import ops
from mindspore.ops import functional as F
from mindspore import Tensor, Parameter
from mindspore.nn import CellList

from .atoms import AtomsBase, Atoms
from ...function import get_integer


[docs]class Group(AtomsBase): r""" Group of atoms. Args: atoms (Union[List[AtomsBase], Tuple[AtomsBase]]): List of AtomsBase. Member should be the subclass of AtomsBase. batched (bool): Whether the first dimension of index is the batch size. Default: ``False``. keep_in_box (bool): Whether to displace the coordinate in PBC box. Default: ``False``. axis (int): Axis to concatenate the coordinates of atoms. name (str): Name of the Colvar. Default: 'atoms_group'. Supported Platforms: ``Ascend`` ``GPU`` """ def __init__(self, atoms: Union[List[AtomsBase], Tuple[AtomsBase]], batched: bool = False, keep_in_box: bool = False, axis: int = 1, name: str = 'atoms_group', ): super().__init__( keep_in_box=keep_in_box, name=name, ) if isinstance(atoms, AtomsBase): atoms = [atoms] elif isinstance(atoms, (Tensor, Parameter, ndarray)): atoms = [Atoms(atoms, batched, keep_in_box)] elif isinstance(atoms, (list, tuple)): if set(map(type, atoms)) == {int}: atoms = [Atoms(atoms, batched, keep_in_box)] else: raise TypeError(f'The type of "atoms" must be list, tuple or AtomsBase, ' f'but got: {type(atoms)}') self.num_groups = len(atoms) axis = get_integer(axis) if axis in (0, -1): raise ValueError(f'The axis ({axis}) cannot be 0 or -1!') atoms_ = [] dim = 0 shape = None periodic = () for i, a in enumerate(atoms): if isinstance(a, (Tensor, Parameter, ndarray)): a = Atoms(a, batched, keep_in_box) elif isinstance(atoms, (list, tuple)): if set(map(type, atoms)) == {int}: atoms = [Atoms(atoms, batched, keep_in_box)] elif not isinstance(a, AtomsBase): raise TypeError(f'The type of elements in "atoms" must be AtomsBase, Tensor, Parameter or ndarray ' f'but got: {type(a)}') shape_ = (1,) + a.shape dim += shape_[axis] shape_ = shape_[:axis] + shape_[axis+1:] periodic += (F.expand_dims(a.periodic, 0),) if i > 0 and shape_ != shape: raise ValueError(f'The shape of the No.{i} AtomsBase {a.shape} cannot be ' f'concatenate with the shape of previous one: {shape}') shape = shape_ atoms_.append(a) self.atoms: List[AtomsBase] = CellList(atoms_) shape = shape[:axis] + (dim,) + shape[axis:] self._shape = shape[1:] self._ndim = len(self._shape) self.concat = ops.Concat(axis) self._periodic = F.squeeze(self.concat(periodic), 0) def construct(self, coordinate: Tensor, pbc_box: Tensor = None): r"""get position coordinates of atoms group Args: coordinate (Tensor): Tensor of shape (B, A, D). Data type is float. Position coordinate of atoms in system. `B` means batchsize, i.e. number of walkers in simulation. `A` means number of colvar in system. `D` means dimension of the simulation system. Usually is 3. pbc_box (Tensor): Tensor of shape (B, D). Data type is float. Tensor of PBC box. Default: ``None``. Returns: position (Tensor): Tensor of shape (B, a_1, a_2, ..., a_n, D). Data type is float. `a_{i}` means Dimension of specific atoms. """ atoms = () for i in range(self.num_groups): # (B, a_1'(i), a_2, ..., a_n, D) atoms += (self.atoms[i](coordinate, pbc_box),) # (B, a_1, a_2, ..., a_n, D) <- (B, a_1'(i), a_2, ..., a_n, D) atoms = self.concat(atoms) if pbc_box is not None and self.keep_in_box: atoms = self.coordinate_in_pbc(atoms, pbc_box) if self.do_reshape: new_shape = coordinate.shape[0] + self._shape atoms = F.reshape(atoms, new_shape) return atoms