mindquantum.framework.MQN2EncoderOnlyOps

class mindquantum.framework.MQN2EncoderOnlyOps(expectation_with_grad)[源代码]

仅包含encoder线路的量子线路演化算子,算子返回参数化量子线路(PQC)演化出的量子态上哈密顿量期望绝对值的平方。此算子只能在 PYNATIVE_MODE 下执行。

参数:

  • expectation_with_grad (GradOpsWrapper) - 接收encoder数据和ansatz数据,并返回期望值和参数相对于期望的梯度值。

输入:

  • ans_data (Tensor) - shape为 \(N\) 的Tensor,用于ansatz电路,其中 \(N\) 表示ansatz参数的数量。

输出:

Tensor,hamiltonian期望绝对值的平方。

支持平台:

GPU, CPU

样例:

>>> import numpy as np
>>> import mindspore as ms
>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.operators import Hamiltonian, QubitOperator
>>> from mindquantum.framework import MQN2EncoderOnlyOps
>>> from mindquantum.simulator import Simulator
>>> ms.context.set_context(mode=ms.context.PYNATIVE_MODE, device_target="CPU")
>>> circ = Circuit().ry('a', 0).h(0).rx('b', 0).as_encoder()
>>> ham = Hamiltonian(QubitOperator('Z0'))
>>> sim = Simulator('projectq', 1)
>>> grad_ops = sim.get_expectation_with_grad(ham, circ)
>>> data = np.array([[0.1, 0.2], [0.3, 0.4]])
>>> f, g = grad_ops(data)
>>> np.abs(f) ** 2
array([[0.00957333],
       [0.07408856]])
>>> net = MQN2EncoderOnlyOps(grad_ops)
>>> f_ms = net(ms.Tensor(data))
>>> f_ms
Tensor(shape=[2, 1], dtype=Float32, value=
[[ 9.57333017e-03],
 [ 7.40885586e-02]])