Source code for mindquantum.algorithm.library.general_w_state

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""General W State."""

import numpy as np

from mindquantum.core.circuit import Circuit
from mindquantum.core.gates import RY, X
from mindquantum.utils.type_value_check import _check_input_type


[文档]def general_w_state(qubits): r""" General W State. The W State is defined as the equality superposition of bases that only one qubit is in :math:`\left|1\right>` while others qubits are in :math:`\left|0\right>`. For example, a three qubits W state is defined as: .. math:: \left|\rm W\right> = (\left|001\right> + \left|010\right> + \left|100\right>)/\sqrt(3) Here in this API, we can define a W state on any sub hilbert space of any total number qubits. Note: Please refer to https://quantumcomputing.stackexchange.com/questions/4350/general-construction-of-w-n-state. Args: qubits (list[int]): Qubits you want to apply general W state. Examples: >>> from mindquantum.algorithm.library import general_w_state >>> print(general_w_state(range(3)).get_qs(ket=True)) 0.5773502691896257¦001⟩ 0.5773502691896258¦010⟩ 0.5773502691896257¦100⟩ Returns: Circuit, circuit that can prepare w state. """ _check_input_type('qubits', (list, range), qubits) circuit = Circuit() for i in range(len(qubits) - 1): angle_val = 2 * np.arccos(np.sqrt(1 / (len(qubits) - i))) if i == 0: circuit += RY(angle_val).on(qubits[i]) else: circuit += RY(angle_val).on(qubits[i], qubits[i - 1]) for j in reversed(range(len(qubits) - 1)): circuit += X.on(qubits[j + 1], qubits[j]) if j == 0: circuit += X.on(qubits[j]) return circuit