{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 量子测量\n",
    "\n",
    "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.5.0/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.5.0/mindquantum/zh_cn/beginner/mindspore_quantum_measurement.ipynb) \n",
    "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.5.0/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.5.0/mindquantum/zh_cn/beginner/mindspore_quantum_measurement.py) \n",
    "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.5.0/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.5.0/docs/mindquantum/docs/source_zh_cn/beginner/quantum_measurement.ipynb)\n",
    "\n",
    "## 概述\n",
    "\n",
    "在量子线路设计时,我们最终需要通过测量(measure)操作获得结果,进行测量的时候需要选定特定的基态进行测量,而测量得到的结果是不确定的,测量后量子态也会随机坍塌到我们测量的某个基态上。\n",
    "\n",
    "量子测量由一组测量算子${M_m}$描述,这些算子作用在被测系统状态空间上,指标$m$表示实验中可能的测量结果,若在测量前,量子系统的状态为$|\\psi⟩$,则结果$m$发生的可能性为:\n",
    "\n",
    "$$\n",
    "p(m)=⟨\\psi|M^\\dagger_mM_m|\\psi⟩\n",
    "$$\n",
    "\n",
    "测量后系统的状态塌缩为:\n",
    "\n",
    "$$\n",
    "\\frac{M_m|\\psi⟩}{\\sqrt{⟨\\psi|M^\\dagger_mM_m|\\psi⟩}}\n",
    "$$\n",
    "\n",
    "测量算子满足完备性方程:\n",
    "\n",
    "$$\n",
    "\\Sigma_mM^\\dagger_mM_m=I\n",
    "$$\n",
    "\n",
    "完备性方程表达了概率之和为1的事实:\n",
    "\n",
    "$$\n",
    "1=\\Sigma_m p(m)=\\Sigma_m ⟨\\psi|M^\\dagger_mM_m|\\psi⟩\n",
    "$$\n",
    "\n",
    "该方程对所有的$|\\psi⟩$都成立,与完备性方程等价,但直接验证完备性方程更简单,所以将完备性方程作为约束条件。\n",
    "\n",
    "根据选取测量算子的不同,我们常见的测量分成计算基测量、投影测量、Pauli测量等,MindSpore Quantum提供了丰富的测量功能与可视化展示工具,我们利用这些功能进一步学习量子测量。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 计算基测量\n",
    "\n",
    "我们先对计算基测量有一个简单认识:假设有一个n个量子比特的态,我们对它执行n比特计算基测量,测量后,如果结果为$00 \\cdots0$,表明该n量子比特系统的量子状态已塌缩到$|00 \\cdots0⟩$态;类似地,如果测量其中一个量子比特,那么它表示的$2^n$种情况就会被排除掉一半,即在两个各占一半的空间中,测量操作将量子态投影到其中一个空间,表明该n量子比特系统的量子状态中一个子系统塌缩了。\n",
    "\n",
    "### 单量子比特在计算基下的测量\n",
    "\n",
    "计算基测量算子:$M_0=|0⟩⟨0|$和$M_1=|1⟩⟨1|$,注意到每个测量算子都是Hermite的,即满足$M_0^\\dagger=M_0,M_1^\\dagger=M_1$,并且$M^2_0=M_0,M^2_1=M_1$,于是满足完备性关系:\n",
    "\n",
    "$$\n",
    "I=M^\\dagger_0M_0+M^\\dagger_1M_1=M_0+M_1\n",
    "$$\n",
    "\n",
    "假设被测量状态$|\\psi⟩=a|0⟩+b|1⟩$,则获得测量结果0的概率是:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "p(0)&=⟨\\psi|M^\\dagger_0M_0|\\psi⟩\\\\\n",
    "&=⟨\\psi|M_0|\\psi⟩\\\\\n",
    "&=⟨\\psi|(|0⟩⟨0|)|\\psi⟩\\\\\n",
    "&=(⟨\\psi|0⟩)(⟨0|\\psi⟩)\\\\\n",
    "&=[(⟨0|a^{\\star}+⟨1|b^{\\star})|0⟩][⟨0|(a|0⟩+b|1⟩)]\\\\\n",
    "&=(a^{\\star}⟨0|0⟩+b^{\\star}⟨1|0⟩)(a⟨0|0⟩+b⟨1|0⟩)\\\\\n",
    "&=a^{\\star}a\\\\\n",
    "&=|a|^2\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "类似地,获得测量结果1的概率是$p(1)=|b|^2$。两种情况下,测量后的状态分别为:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "\\frac{M_0|\\psi⟩}{|a|}=\\frac{a}{|a|}|0⟩\\\\\n",
    "\\frac{M_1|\\psi⟩}{|b|}=\\frac{b}{|b|}|1⟩\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "### 多量子比特在计算基下的测量——以双量子比特为例\n",
    "\n",
    "#### 测量系统中所有比特\n",
    "\n",
    "双量子比特系统下计算基测量算子:$M_{00}=|00⟩⟨00|,M_{01}=|01⟩⟨01|,M_{10}=|10⟩⟨10|$和$M_{11}=|11⟩⟨11|$,注意到每个测量算子都是Hermite的,即满足$M_{ij}^\\dagger=M_{ij},i,j\\in\\{0,1\\}$,并且$M_{ij}^2=M_{ij}$,于是满足完备性关系:\n",
    "\n",
    "$$\n",
    "I=M^\\dagger_{00}M_{00}+M^\\dagger_{01}M_{01}+M^\\dagger_{10}M_{10}+M^\\dagger_{11}M_{11}=M_{00}+M_{01}+M_{10}+M_{11}\n",
    "$$\n",
    "\n",
    "假设被测量状态$|\\psi⟩=a|00⟩+b|01⟩+c|10⟩+d|11⟩$,则获得测量结果00的概率是:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "p(00)&=⟨\\psi|M^\\dagger_{00}M_{00}|\\psi⟩\\\\\n",
    "&=⟨\\psi|M_{00}|\\psi⟩\\\\\n",
    "&=⟨\\psi|(|00⟩⟨00|)|\\psi⟩\\\\\n",
    "&=(⟨\\psi|00⟩)(⟨00|\\psi⟩)\\\\\n",
    "&=[(⟨00|a^{\\star}+⟨01|b^{\\star}+⟨10|c^{\\star}+⟨11|d^{\\star})|00⟩][⟨00|(a|00⟩+b|01⟩+c|10⟩+d|11⟩)]\\\\\n",
    "&=(a^{\\star}⟨00|00⟩+b^{\\star}⟨01|00⟩+c^{\\star}⟨10|00⟩+d^{\\star}⟨11|00⟩)(a⟨00|00⟩+b⟨00|01⟩+c⟨00|10⟩+b⟨00|11⟩)\\\\\n",
    "&=a^{\\star}a\\\\\n",
    "&=|a|^2\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "类似地,获得测量结果01的概率是$p(01)=|b|^2$,10的概率是$p(10)=|c|^2$,11的概率是$p(11)=|d|^2$。四种情况下,测量后的状态分别为:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "\\frac{M_{00}|\\psi⟩}{|a|}=\\frac{a}{|a|}|00⟩\\\\\n",
    "\\frac{M_{01}|\\psi⟩}{|b|}=\\frac{b}{|b|}|01⟩\\\\\n",
    "\\frac{M_{10}|\\psi⟩}{|c|}=\\frac{c}{|c|}|10⟩\\\\\n",
    "\\frac{M_{11}|\\psi⟩}{|d|}=\\frac{d}{|d|}|11⟩\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "#### 测量系统中单个比特\n",
    "\n",
    "如果测量双量子比特量子状态的第一个量子比特,双计算基测量算子:$M_0=|0⟩⟨0|\\otimes I$和$M_1=|1⟩⟨1|\\otimes I$,注意到每个测量算子都是Hermite的,即满足$M_0^\\dagger=M_0,M_1^\\dagger=M_1$,并且$M^2_0=M_0,M^2_1=M_1$,于是满足完备性关系:\n",
    "\n",
    "$$\n",
    "I=M^\\dagger_0M_0+M^\\dagger_1M_1=M_0+M_1\n",
    "$$\n",
    "\n",
    "假设被测量状态$|\\psi⟩=a|00⟩+b|01⟩+c|10⟩+d|11⟩$,则测量双量子比特量子状态的第一个量子比特,获得测量结果0的概率是:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "p(0)&=⟨\\psi|M^\\dagger_0M_0|\\psi⟩\\\\\n",
    "&=⟨\\psi|M_0|\\psi⟩\\\\\n",
    "&=⟨\\psi|(|0⟩⟨0|\\otimes I)|\\psi⟩\\\\\n",
    "&=(⟨00|a^{\\star}+⟨01|b^{\\star}+⟨10|c^{\\star}+⟨11|d^{\\star})|(|0⟩⟨0|\\otimes I)|(a|00⟩+b|01⟩+c|10⟩+d|11⟩)\\\\\n",
    "&=(⟨00|a^{\\star}+⟨01|b^{\\star}+⟨10|c^{\\star}+⟨11|d^{\\star})|(a|00⟩+b|01⟩)\\\\\n",
    "&=a^{\\star}a+b^{\\star}b\\\\\n",
    "&=|a|^2+|b|^2\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "类似地,获得测量结果1的概率是$p(1)=|c|^2+|d|^2$。两种情况下,测量后的状态分别为:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "\\frac{M_0|\\psi⟩}{\\sqrt{|a|^2+|b|^2}}=\\frac{a}{\\sqrt{|a|^2+|b|^2}}|00⟩+\\frac{b}{\\sqrt{|a|^2+|b|^2}}|01⟩\\\\\n",
    "\\frac{M_1|\\psi⟩}{\\sqrt{|c|^2+|d|^2}}=\\frac{c}{\\sqrt{|c|^2+|d|^2}}|10⟩+\\frac{d}{\\sqrt{|c|^2+|d|^2}}|11⟩\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "通过对计算基测量的学习,我们可以直观认识到,在多量子比特态的其中一个比特上做测量,本质是将量子态投影到两个子空间之一中。为了简洁的区分出这两个子空间,我们利用线性代数知识知道,可以通过恰好有两个唯一特征值的矩阵来描述两个正交子空间。\n",
    "\n",
    "### 计算基测量的MindSpore Quantum实现\n",
    "\n",
    "接下来我们使用MindSpore Quantum搭建一个含测量操作的量子线路并观察结果,首先导入本教程所依赖的模块。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np                           # 导入numpy库并简写为np\n",
    "from mindquantum.core.gates import X, H      # 导入量子门H, X\n",
    "from mindquantum.simulator import Simulator  # 从mindquantum.simulator中导入Simulator类\n",
    "from mindquantum.core.circuit import Circuit # 导入Circuit模块,用于搭建量子线路\n",
    "from mindquantum.core.gates import Measure   # 引入测量门"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "说明:\n",
    "\n",
    "(1)numpy是一个功能强大的Python库,主要用于对多维数组执行计算,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库;\n",
    "\n",
    "(2)mindquantum是量子-经典混合计算框架,支持多种量子神经网络的训练和推理;\n",
    "\n",
    "(3)搭建的量子线路中所需执行的量子门需要从 [mindquantum.core](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/mindquantum.core.html) 模块中导入;\n",
    "\n",
    "(4)运行量子线路所需要的量子模拟器需要从 [mindquantum.simulator](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/mindquantum.simulator.html) 模块中导入;\n",
    "\n",
    "(5)搭建量子线路所需要的量子线路类 [Circuit](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/core/circuit/mindquantum.core.circuit.Circuit.html) 需要从 [mindquantum.core](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/mindquantum.core.html) 模块中导入;\n",
    "\n",
    "(6)对量子线路进行测量需要从 mindquantum 中导入 [Measure](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/core/gates/mindquantum.core.gates.Measure.html) 操作。\n",
    "\n",
    "我们搭建出一个制备双量子比特均匀叠加态$|\\psi⟩=\\frac{\\sqrt{2}(|00⟩+|11⟩)}{2}$的量子线路,并分别展示在所有量子比特上使用计算基测量和只在0号量子比特上使用计算基测量的结果。\n",
    "\n",
    "#### MindSpore Quantum实现测量系统中所有比特\n",
    "\n",
    "在使用代码演示之前,我们先简单计算出理论值。\n",
    "\n",
    "在所有量子比特上使用计算基测量$|\\psi⟩=\\frac{\\sqrt{2}(|00⟩+|11⟩)}{2}$:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "p(00)&=|a|^2=(\\frac{\\sqrt{2}}{{2}})^2=\\frac{1}{2}\\\\\n",
    "p(01)&=|b|^2=0^2=0\\\\\n",
    "p(10)&=|c|^2=0^2=0\\\\\n",
    "p(11)&=|d|^2=(\\frac{\\sqrt{2}}{{2}})^2=\\frac{1}{2}\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "可以看到,测量结果只有两种可能:00和11,概率均是$\\frac{1}{2}$。测量后的状态分别为:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "\\frac{a}{|a|}|00⟩=|00⟩\\\\\n",
    "\\frac{d}{|d|}|11⟩=|11⟩\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "我们开始搭建制备$|\\psi⟩=\\frac{\\sqrt{2}(|00⟩+|11⟩)}{2}$并在所有比特上做测量的量子线路:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"276.8\" height=\"140.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0.0\" width=\"276.8\" height=\"140.0\" fill=\"#ffffff\" /><text x=\"20.0\" y=\"40.0\" font-size=\"16px\" dominant-baseline=\"middle\" text-anchor=\"start\" font-family=\"Arial\" font-weight=\"normal\" fill=\"#252b3a\" >q0: </text><text x=\"20.0\" y=\"100.0\" font-size=\"16px\" dominant-baseline=\"middle\" text-anchor=\"start\" font-family=\"Arial\" font-weight=\"normal\" fill=\"#252b3a\" >q1: </text><line x1=\"48.8\" x2=\"256.8\" y1=\"40.0\" y2=\"40.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"48.8\" x2=\"256.8\" y1=\"100.0\" y2=\"100.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"72.8\" y=\"20.0\" width=\"40.0\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#5e7ce0\" fill-opacity=\"1\" /><text x=\"92.8\" y=\"40.0\" font-size=\"20px\" dominant-baseline=\"middle\" text-anchor=\"middle\" font-family=\"Arial\" font-weight=\"normal\" fill=\"#ffffff\" >H </text><circle cx=\"152.8\" cy=\"40.0\" r=\"4\" fill=\"#16acff\" /><line x1=\"152.8\" x2=\"152.8\" y1=\"40.0\" y2=\"100.0\" stroke=\"#16acff\" stroke-width=\"3\" /><rect x=\"132.8\" y=\"80.0\" width=\"40\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#16acff\" fill-opacity=\"1\" /><line x1=\"138.8\" x2=\"166.8\" y1=\"100.0\" y2=\"100.0\" stroke=\"#ffffff\" stroke-width=\"4\" /><line x1=\"152.8\" x2=\"152.8\" y1=\"86.0\" y2=\"114.0\" stroke=\"#ffffff\" stroke-width=\"4\" /><rect x=\"192.8\" y=\"20.0\" width=\"40\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#ff7272\" fill-opacity=\"1\" /><circle cx=\"212.8\" cy=\"50.4\" r=\"1.6\" fill=\"#ffffff\" /><path d=\"M 200.0 50.4 A 12.8 12.8 0 0 1 225.60000000000002 50.4\" stroke=\"#ffffff\" stroke-width=\"2.4000000000000004\" fill-opacity=\"0\" /><path d=\"M 216.90184831748593 33.93539030917347 L 225.21569219381655 29.135390309173467 L 225.21569219381655 38.73539030917347 L 221.8901546432843 36.815390309173466 L 214.04707658144957 50.4 L 212.38430780618347 49.44 L 220.2273858680182 35.85539030917347 Z\" fill=\"#ffffff\" /><rect x=\"192.8\" y=\"80.0\" width=\"40\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#ff7272\" fill-opacity=\"1\" /><circle cx=\"212.8\" cy=\"110.4\" r=\"1.6\" fill=\"#ffffff\" /><path d=\"M 200.0 110.4 A 12.8 12.8 0 0 1 225.60000000000002 110.4\" stroke=\"#ffffff\" stroke-width=\"2.4000000000000004\" fill-opacity=\"0\" /><path d=\"M 216.90184831748593 93.93539030917347 L 225.21569219381655 89.13539030917347 L 225.21569219381655 98.73539030917347 L 221.8901546432843 96.81539030917347 L 214.04707658144957 110.4 L 212.38430780618347 109.44 L 220.2273858680182 95.85539030917347 Z\" fill=\"#ffffff\" /></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.circuit_svg_drawer.SVGCircuit at 0x7f8540219c40>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "circ_all = Circuit()             # 初始化量子线路\n",
    "circ_all += H.on(0)              # H门作用在第0位量子比特\n",
    "circ_all += X.on(1, 0)           # X门作用在第1位量子比特且受第0位量子比特控制\n",
    "circ_all += Measure('q0').on(0)  # 在0号量子比特作用一个测量,并将该测量命名为'q0'\n",
    "circ_all += Measure('q1').on(1)  # 在1号量子比特作用一个测量,并将该测量命名为'q1'\n",
    "circ_all.svg()                   # 绘制SVG格式的量子线路图片"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"408.4\" height=\"117.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0\" width=\"408.4\" height=\"117.0\" fill=\"#ffffff\" /><text x=\"10\" y=\"17.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Shots:\n",
       " 1 </text><text x=\"10\" y=\"31.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Keys: q1 q0 </text><line x1=\"38.4\" x2=\"398.4\" y1=\"62.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"38.4\" x2=\"38.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"40.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.0 </text><line x1=\"38.4\" x2=\"38.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"98.4\" x2=\"98.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"100.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.2 </text><line x1=\"98.4\" x2=\"98.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"158.4\" x2=\"158.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"160.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.4 </text><line x1=\"158.4\" x2=\"158.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"218.4\" x2=\"218.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"220.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.6 </text><line x1=\"218.4\" x2=\"218.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"278.4\" x2=\"278.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"280.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.8 </text><line x1=\"278.4\" x2=\"278.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"338.4\" x2=\"338.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"340.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >1.0 </text><line x1=\"338.4\" x2=\"338.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><text x=\"29.4\" y=\"85.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >11 </text><line x1=\"31.4\" x2=\"38.4\" y1=\"85.0\" y2=\"85.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"38.4\" y=\"73.0\" width=\"300.0\" height=\"24\" id=\"bar_0_1703865554096665990\" fill=\"#5e7ce0\" /><text x=\"348.4\" y=\"85.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_0_1703865554096702590\" fill-opacity=\"0\" >1 </text><animate xlink:href=\"#bar_0_1703865554096665990\" attributeName=\"width\" from=\"0\" to=\"300.0\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 300.0\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_0_1703865554096665990\" attributeName=\"fill\" from=\"#5e7ce0\" to=\"#fac209\" dur=\"0.15s\" calcMode=\"spline\" values=\"#5e7ce0; #fac209\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_0_1703865554096702590\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><text x=\"206.7\" y=\"41.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"middle\" >probability </text></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.measure_res_svg_drawer.SVGMeasure at 0x7f8540219ac0>"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim = Simulator('mqvector', 2)        # 声明一个2比特的mqvector模拟器\n",
    "sim.apply_circuit(circ_all).svg()     # 在模拟器上运行量子线路"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以看到我们得到的测量结果是'11'(由于测量具有随机性,此处的结果在执行时也有可能时'00'),测量后的量子态塌缩为:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1¦11⟩\n"
     ]
    }
   ],
   "source": [
    "print(sim.get_qs(True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "量子态塌缩成了$1|11⟩$,与理论值相符。\n",
    "\n",
    "如果我们多测量几次,可以发现测量结果也会为'00' (请执行多次观察不同的结果):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"408.4\" height=\"117.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0\" width=\"408.4\" height=\"117.0\" fill=\"#ffffff\" /><text x=\"10\" y=\"17.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Shots:\n",
       " 1 </text><text x=\"10\" y=\"31.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Keys: q1 q0 </text><line x1=\"38.4\" x2=\"398.4\" y1=\"62.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"38.4\" x2=\"38.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"40.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.0 </text><line x1=\"38.4\" x2=\"38.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"98.4\" x2=\"98.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"100.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.2 </text><line x1=\"98.4\" x2=\"98.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"158.4\" x2=\"158.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"160.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.4 </text><line x1=\"158.4\" x2=\"158.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"218.4\" x2=\"218.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"220.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.6 </text><line x1=\"218.4\" x2=\"218.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"278.4\" x2=\"278.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"280.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.8 </text><line x1=\"278.4\" x2=\"278.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"338.4\" x2=\"338.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"340.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >1.0 </text><line x1=\"338.4\" x2=\"338.4\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><text x=\"29.4\" y=\"85.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >00 </text><line x1=\"31.4\" x2=\"38.4\" y1=\"85.0\" y2=\"85.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"38.4\" y=\"73.0\" width=\"300.0\" height=\"24\" id=\"bar_0_1703865558997440386\" fill=\"#5e7ce0\" /><text x=\"348.4\" y=\"85.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_0_1703865558997461786\" fill-opacity=\"0\" >1 </text><animate xlink:href=\"#bar_0_1703865558997440386\" attributeName=\"width\" from=\"0\" to=\"300.0\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 300.0\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_0_1703865558997440386\" attributeName=\"fill\" from=\"#5e7ce0\" to=\"#fac209\" dur=\"0.15s\" calcMode=\"spline\" values=\"#5e7ce0; #fac209\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_0_1703865558997461786\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><text x=\"206.7\" y=\"41.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"middle\" >probability </text></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.measure_res_svg_drawer.SVGMeasure at 0x7f85403b5d90>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.reset()                         #复位模拟器\n",
    "sim.apply_circuit(circ_all).svg()   # 在模拟器上运行量子线路"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "打印出此时量子态,可以看到它坍缩成了相应的$|00⟩$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1¦00⟩\n"
     ]
    }
   ],
   "source": [
    "print(sim.get_qs(True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们观察到,测量结果时而为'00'时而为'11',符合理论预期,但是没有办法观察出现00和11的概率是否相同,我们希望可以多次测量,统计出不同结果出现的频率,以此观察结果是否满足预期的概率分布。为此我们使用量子线路采样(Sampling)功能:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"408.4\" height=\"147.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0\" width=\"408.4\" height=\"147.0\" fill=\"#ffffff\" /><text x=\"10\" y=\"17.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Shots:\n",
       " 1000 </text><text x=\"10\" y=\"31.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Keys: q1 q0 </text><line x1=\"38.4\" x2=\"398.4\" y1=\"62.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"38.4\" x2=\"38.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"40.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.0 </text><line x1=\"38.4\" x2=\"38.4\" y1=\"62.0\" y2=\"137.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"98.4\" x2=\"98.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"100.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.101 </text><line x1=\"98.4\" x2=\"98.4\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"158.4\" x2=\"158.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"160.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.201 </text><line x1=\"158.4\" x2=\"158.4\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"218.4\" x2=\"218.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"220.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.302 </text><line x1=\"218.4\" x2=\"218.4\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"278.4\" x2=\"278.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"280.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.402 </text><line x1=\"278.4\" x2=\"278.4\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"338.4\" x2=\"338.4\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"340.4\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.503 </text><line x1=\"338.4\" x2=\"338.4\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><text x=\"29.4\" y=\"85.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >00 </text><line x1=\"31.4\" x2=\"38.4\" y1=\"85.0\" y2=\"85.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"38.4\" y=\"73.0\" width=\"300.0\" height=\"24\" id=\"bar_0_1703865562462618985\" fill=\"#5e7ce0\" /><text x=\"348.4\" y=\"85.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_0_1703865562462640685\" fill-opacity=\"0\" >503 </text><text x=\"29.4\" y=\"115.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >11 </text><line x1=\"31.4\" x2=\"38.4\" y1=\"115.0\" y2=\"115.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"38.4\" y=\"103.0\" width=\"296.42147117296224\" height=\"24\" id=\"bar_1_1703865562462660585\" fill=\"#16acff\" /><text x=\"344.8214711729622\" y=\"115.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_1_1703865562462670485\" fill-opacity=\"0\" >497 </text><animate xlink:href=\"#bar_0_1703865562462618985\" attributeName=\"width\" from=\"0\" to=\"300.0\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 300.0\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_1_1703865562462660585\" attributeName=\"width\" from=\"0\" to=\"296.42147117296224\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 296.42147117296224\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_0_1703865562462618985\" attributeName=\"fill\" from=\"#5e7ce0\" to=\"#fac209\" dur=\"0.15s\" calcMode=\"spline\" values=\"#5e7ce0; #fac209\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_0_1703865562462640685\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_1_1703865562462670485\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><text x=\"206.7\" y=\"41.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"middle\" >probability </text></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.measure_res_svg_drawer.SVGMeasure at 0x7f854035ffd0>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.reset()\n",
    "result = sim.sampling(circ_all, shots=1000)  # 对上面定义的线路采样1000次\n",
    "result.svg()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们可以看到,采样1000中,'00'出现了503次,'11'出现了497次(由于测量具有随机性,每次运行结果会略有不同),采样结果符合概率分布,细微的误差是由模拟器噪声导致。仔细阅读的同学可以发现,在[量子模拟器教程](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/beginner/quantum_simulator.html)中我们已经展示过该线路的采样结果,但并未解释结果如是分布的原因,在本教程中学习了计算基测量后,相信同学们对该结果分布的认识更加深刻。\n",
    "\n",
    "#### MindSpore Quantum实现测量系统中单个比特\n",
    "\n",
    "同样地,在使用代码演示之前,我们先简单计算出理论值。\n",
    "\n",
    "在0号量子比特上使用计算基测量$|\\psi⟩=\\frac{\\sqrt{2}(|00⟩+|11⟩)}{2}$:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "p(0)=|a|^2+|b|^2=(\\frac{\\sqrt{2}}{{2}})^2=\\frac{1}{2}\\\\\n",
    "p(1)=|c|^2+|d|^2=(\\frac{\\sqrt{2}}{{2}})^2=\\frac{1}{2}\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "可以看到,测量结果有两种可能:0和1,概率均是$\\frac{1}{2}$。测量后的状态分别为:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "\\frac{a}{\\sqrt{|a|^2+|b|^2}}|00⟩+\\frac{b}{\\sqrt{|a|^2+|b|^2}}|01⟩=|00⟩\\\\\n",
    "\\frac{c}{\\sqrt{|c|^2+|d|^2}}|10⟩+\\frac{d}{\\sqrt{|c|^2+|d|^2}}|11⟩=|11⟩\\\\\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "我们开始搭建制备$|\\psi⟩=\\frac{\\sqrt{2}(|00⟩+|11⟩)}{2}$并在0号量子比特上做测量的量子线路:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"276.8\" height=\"140.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0.0\" width=\"276.8\" height=\"140.0\" fill=\"#ffffff\" /><text x=\"20.0\" y=\"40.0\" font-size=\"16px\" dominant-baseline=\"middle\" text-anchor=\"start\" font-family=\"Arial\" font-weight=\"normal\" fill=\"#252b3a\" >q0: </text><text x=\"20.0\" y=\"100.0\" font-size=\"16px\" dominant-baseline=\"middle\" text-anchor=\"start\" font-family=\"Arial\" font-weight=\"normal\" fill=\"#252b3a\" >q1: </text><line x1=\"48.8\" x2=\"256.8\" y1=\"40.0\" y2=\"40.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"48.8\" x2=\"256.8\" y1=\"100.0\" y2=\"100.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"72.8\" y=\"20.0\" width=\"40.0\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#5e7ce0\" fill-opacity=\"1\" /><text x=\"92.8\" y=\"40.0\" font-size=\"20px\" dominant-baseline=\"middle\" text-anchor=\"middle\" font-family=\"Arial\" font-weight=\"normal\" fill=\"#ffffff\" >H </text><circle cx=\"152.8\" cy=\"40.0\" r=\"4\" fill=\"#16acff\" /><line x1=\"152.8\" x2=\"152.8\" y1=\"40.0\" y2=\"100.0\" stroke=\"#16acff\" stroke-width=\"3\" /><rect x=\"132.8\" y=\"80.0\" width=\"40\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#16acff\" fill-opacity=\"1\" /><line x1=\"138.8\" x2=\"166.8\" y1=\"100.0\" y2=\"100.0\" stroke=\"#ffffff\" stroke-width=\"4\" /><line x1=\"152.8\" x2=\"152.8\" y1=\"86.0\" y2=\"114.0\" stroke=\"#ffffff\" stroke-width=\"4\" /><rect x=\"192.8\" y=\"20.0\" width=\"40\" height=\"40\" rx=\"4\" ry=\"4\" stroke=\"#ffffff\" stroke-width=\"0\" fill=\"#ff7272\" fill-opacity=\"1\" /><circle cx=\"212.8\" cy=\"50.4\" r=\"1.6\" fill=\"#ffffff\" /><path d=\"M 200.0 50.4 A 12.8 12.8 0 0 1 225.60000000000002 50.4\" stroke=\"#ffffff\" stroke-width=\"2.4000000000000004\" fill-opacity=\"0\" /><path d=\"M 216.90184831748593 33.93539030917347 L 225.21569219381655 29.135390309173467 L 225.21569219381655 38.73539030917347 L 221.8901546432843 36.815390309173466 L 214.04707658144957 50.4 L 212.38430780618347 49.44 L 220.2273858680182 35.85539030917347 Z\" fill=\"#ffffff\" /></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.circuit_svg_drawer.SVGCircuit at 0x7f84b7026610>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "circ_partial = Circuit()             # 初始化量子线路\n",
    "circ_partial += H.on(0)              # H门作用在第0位量子比特\n",
    "circ_partial += X.on(1, 0)           # X门作用在第1位量子比特且受第0位量子比特控制\n",
    "circ_partial += Measure('q0').on(0)  # 在0号量子比特作用一个测量,并将该测量命名为'q0'\n",
    "circ_partial.svg()                   # 绘制SVG格式的量子线路图片"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"401.2\" height=\"117.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0\" width=\"401.2\" height=\"117.0\" fill=\"#ffffff\" /><text x=\"10\" y=\"17.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Shots:\n",
       " 1 </text><text x=\"10\" y=\"31.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Keys: q0 </text><line x1=\"31.2\" x2=\"391.2\" y1=\"62.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"31.2\" x2=\"31.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"33.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.0 </text><line x1=\"31.2\" x2=\"31.2\" y1=\"62.0\" y2=\"107.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"91.2\" x2=\"91.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"93.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.2 </text><line x1=\"91.2\" x2=\"91.2\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"151.2\" x2=\"151.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"153.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.4 </text><line x1=\"151.2\" x2=\"151.2\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"211.2\" x2=\"211.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"213.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.6 </text><line x1=\"211.2\" x2=\"211.2\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"271.2\" x2=\"271.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"273.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.8 </text><line x1=\"271.2\" x2=\"271.2\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"331.2\" x2=\"331.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"333.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >1.0 </text><line x1=\"331.2\" x2=\"331.2\" y1=\"62.0\" y2=\"107.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><text x=\"22.2\" y=\"85.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >1 </text><line x1=\"24.2\" x2=\"31.2\" y1=\"85.0\" y2=\"85.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"31.2\" y=\"73.0\" width=\"300.0\" height=\"24\" id=\"bar_0_1703865578715504528\" fill=\"#5e7ce0\" /><text x=\"341.2\" y=\"85.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_0_1703865578715526028\" fill-opacity=\"0\" >1 </text><animate xlink:href=\"#bar_0_1703865578715504528\" attributeName=\"width\" from=\"0\" to=\"300.0\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 300.0\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_0_1703865578715504528\" attributeName=\"fill\" from=\"#5e7ce0\" to=\"#fac209\" dur=\"0.15s\" calcMode=\"spline\" values=\"#5e7ce0; #fac209\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_0_1703865578715526028\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><text x=\"203.1\" y=\"41.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"middle\" >probability </text></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.measure_res_svg_drawer.SVGMeasure at 0x7f84b701beb0>"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.reset()                            # 复位模拟器\n",
    "sim.apply_circuit(circ_partial).svg()  # 在模拟器上运行量子线路"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以看到我们得到的测量结果是'1'(由于测量具有随机性,执行时有可能测量结果为'0'),测量后的量子态塌缩为:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1¦11⟩\n"
     ]
    }
   ],
   "source": [
    "print(sim.get_qs(True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "量子态塌缩成了$1|11⟩$,与理论值相符。\n",
    "\n",
    "同样地,如果我们多测量几次,可以发现测量结果也会为'0',此处不再演示。我们直接对该量子线路采样1000次观察结果:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"401.2\" height=\"147.0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><rect x=\"0\" y=\"0\" width=\"401.2\" height=\"147.0\" fill=\"#ffffff\" /><text x=\"10\" y=\"17.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Shots:\n",
       " 1000 </text><text x=\"10\" y=\"31.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" >Keys: q0 </text><line x1=\"31.2\" x2=\"391.2\" y1=\"62.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"31.2\" x2=\"31.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"33.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.0 </text><line x1=\"31.2\" x2=\"31.2\" y1=\"62.0\" y2=\"137.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><line x1=\"91.2\" x2=\"91.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"93.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.1 </text><line x1=\"91.2\" x2=\"91.2\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"151.2\" x2=\"151.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"153.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.2 </text><line x1=\"151.2\" x2=\"151.2\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"211.2\" x2=\"211.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"213.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.3 </text><line x1=\"211.2\" x2=\"211.2\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"271.2\" x2=\"271.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"273.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.4 </text><line x1=\"271.2\" x2=\"271.2\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><line x1=\"331.2\" x2=\"331.2\" y1=\"55.0\" y2=\"62.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><text x=\"333.2\" y=\"60.0\" font-size=\"12px\" dominant-baseline=\"bottom\" text-anchor=\"start\" fill=\"#575d6c\" >0.5 </text><line x1=\"331.2\" x2=\"331.2\" y1=\"62.0\" y2=\"137.0\" stroke=\"#dfe1e6\" stroke-width=\"1\" /><text x=\"22.2\" y=\"85.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >0 </text><line x1=\"24.2\" x2=\"31.2\" y1=\"85.0\" y2=\"85.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"31.2\" y=\"73.0\" width=\"300.0\" height=\"24\" id=\"bar_0_1703865583462333441\" fill=\"#5e7ce0\" /><text x=\"341.2\" y=\"85.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_0_1703865583462356541\" fill-opacity=\"0\" >500 </text><text x=\"22.2\" y=\"115.0\" font-size=\"12px\" dominant-baseline=\"middle\" text-anchor=\"end\" fill=\"#575d6c\" >1 </text><line x1=\"24.2\" x2=\"31.2\" y1=\"115.0\" y2=\"115.0\" stroke=\"#adb0b8\" stroke-width=\"1\" /><rect x=\"31.2\" y=\"103.0\" width=\"300.0\" height=\"24\" id=\"bar_1_1703865583462371741\" fill=\"#16acff\" /><text x=\"341.2\" y=\"115.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"start\" fill=\"#575d6c\" id=\"bar_text_1_1703865583462387241\" fill-opacity=\"0\" >500 </text><animate xlink:href=\"#bar_0_1703865583462333441\" attributeName=\"width\" from=\"0\" to=\"300.0\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 300.0\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_1_1703865583462371741\" attributeName=\"width\" from=\"0\" to=\"300.0\" dur=\"0.3s\" calcMode=\"spline\" values=\"0; 300.0\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" /><animate xlink:href=\"#bar_0_1703865583462333441\" attributeName=\"fill\" from=\"#5e7ce0\" to=\"#fac209\" dur=\"0.15s\" calcMode=\"spline\" values=\"#5e7ce0; #fac209\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_1_1703865583462371741\" attributeName=\"fill\" from=\"#16acff\" to=\"#fac209\" dur=\"0.15s\" calcMode=\"spline\" values=\"#16acff; #fac209\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_0_1703865583462356541\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><animate xlink:href=\"#bar_text_1_1703865583462387241\" attributeName=\"fill-opacity\" from=\"0\" to=\"1\" dur=\"0.15s\" calcMode=\"spline\" values=\"0; 1\" keyTimes=\"0; 1\" keySplines=\"0.42 0 1 0.8;\" fill=\"freeze\" begin=\"0.3s\" /><text x=\"203.1\" y=\"41.0\" font-size=\"14px\" dominant-baseline=\"middle\" text-anchor=\"middle\" >probability </text></svg>"
      ],
      "text/plain": [
       "<mindquantum.io.display.measure_res_svg_drawer.SVGMeasure at 0x7f84b70286a0>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.reset()\n",
    "result = sim.sampling(circ_partial, shots=1000)  # 对上面定义的线路采样1000次\n",
    "result.svg()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们可以看到,采样1000中,'0'出现了500次,'1'出现了500次。采样结果符合概率分布,细微的误差是由模拟器噪声导致。\n",
    "\n",
    "以上我们完成了量子计算基测量的学习,接下来我们进入到另一种测量操作的学习:投影测量。\n",
    "\n",
    "## 投影测量\n",
    "\n",
    "投影测量(projective measuremen)由被观察系统状态空间上一个可观测量(observable)Hermite算子$M$来描述($M=M^{\\dagger}$),该可观测量具有谱分解:\n",
    "\n",
    "$$\n",
    "M=\\Sigma_{m}mP_m\n",
    "$$\n",
    "\n",
    "这里的$P_m$是在$m$的特征值$m$对应特征空间上的投影,测量的可能结果对应于测量算子的特征值$m$。测量状态$|\\psi⟩$时,得到结果$m$的概率为\n",
    "\n",
    "$$\n",
    "p(m)=⟨\\psi|P_m|\\psi⟩\n",
    "$$\n",
    "\n",
    "测量后量子系统的状态立即为:\n",
    "\n",
    "$$\n",
    "\\frac{P_m|\\psi⟩}{\\sqrt{p(m)}}\n",
    "$$\n",
    "\n",
    "直观解释是,我们对状态$|\\psi⟩$使用$M$投影测量,是把$|\\psi⟩$往$M$的特征空间上投影,有$p_m$的概率投影到空间$V_{m}$中,此时测量结果为该空间对应的特征值$m$。\n",
    "\n",
    "投影测量一个重要的特征就是很容易计算投影测量的期望值$E(M)$。\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "    E(M) &=\\Sigma_i \\lambda_i p_i\\\\\n",
    "         &=\\Sigma_i \\lambda_i⟨\\psi|P_i|\\psi⟩\\\\\n",
    "         &=⟨\\psi|(\\Sigma_i\\lambda_i P_i)|\\psi⟩\\\\\n",
    "         &=⟨\\psi|M|\\psi⟩\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "投影测量可以视为一般测量的特殊情况,当测量算子除了满足完备性关系$\\Sigma_mM_m^\\dagger M_m=I$时,还满足$M_m$是正交投影算子的条件,即$M_m$是Hermite的,并且\n",
    "\n",
    "$$\n",
    "M_mM_{m'}=\\delta_{mm'}M_m\n",
    "$$\n",
    "\n",
    "有了这些附加限制,一般测量退化成投影测量。\n",
    "\n",
    "## Pauli测量\n",
    "\n",
    "最后我们学习Pauli测量,Pauli测量是投影测量中把可观测量$M$选取为泡利算子。以Pauli-Z测量为例,我们考虑Z算子:\n",
    "\n",
    "$$\n",
    "Z=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&-1\n",
    "    \\end{array}\n",
    "\\right)\n",
    "$$\n",
    "\n",
    "可以看出,Z满足$Z=Z^\\dagger$,即Z是Hermite的。Z有两个特征值+1,-1,对应的特征向量分别为:|0⟩和|1⟩。因此Z的谱分解形式为:\n",
    "\n",
    "$$\n",
    "Z=\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&-1\n",
    "    \\end{array}\n",
    "\\right)=1\\times|0⟩⟨0|+(-1)\\times|1⟩⟨1|\n",
    "$$\n",
    "\n",
    "使用Z做投影测量,如果测量结果为+1,我们可得出该量子比特的状态被投影到Z算子的+1特征子空间$V_{+1}$中,表明被测量态被投影成了|0⟩,相似地,如果测量结果为-1,可得出该量子比特被投影到-1特征子空间$V_{-1}$中,表明被测量态被投影成了|1⟩,这即为Pauli-Z测量。\n",
    "\n",
    "MindSpore Quantum中为我们提供了基于给定可观测量H计算投影测量期望值的功能:\n",
    "\n",
    "[get_expectation(hamiltonian)](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.get_expectation) 可以计算出模拟器当前量子态关于某个观察量的期望值:$E=⟨\\psi|H|\\psi⟩$。**该操作不会改变量子态**。\n",
    "\n",
    "例如,我们希望对处于$\\frac{\\sqrt{2}}{2}|00⟩+\\frac{\\sqrt{2}}{2}|11⟩$态的系统上的q1比特上作用一个Pauli-Z测量,首先我们将模拟器置位:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.70710678+0.j 0.        +0.j 0.        +0.j 0.70710678+0.j]\n"
     ]
    }
   ],
   "source": [
    "sim = Simulator('mqvector', 2)                        # 声明一个2比特的mqvector模拟器\n",
    "sim.set_qs(np.array([2**0.5 / 2, 0, 0, 2**0.5 / 2]))  # 设置模拟器状态\n",
    "print(sim.get_qs())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "然后我们构造出在q1上做Pauli-Z测量对应的哈密顿量hams:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mindquantum.core.operators import Hamiltonian    # 引入哈密顿量定义模块\n",
    "from mindquantum.core.operators import QubitOperator  # 引入稀疏算子定义模块\n",
    "\n",
    "hams = Hamiltonian(QubitOperator('Z1'))               # 构建在q1上作Pauli-Z测量的哈密顿量"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "为了深刻认识学习Pauli-Z测量操作,我们先手动计算出模拟器当前量子态在q1上做Pauli-Z测量的期望值,并推算出测量结果为+1,-1的概率:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "E&=⟨\\psi|H|\\psi⟩\\\\&=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "(Z \\otimes I) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\\\&=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&-1\\\\\n",
    "    \\end{array}\n",
    "\\right) \\otimes\n",
    "\\left(\n",
    "\\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&1\\\\\n",
    "\\end{array}\n",
    "\\right)\n",
    "\\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\\\&=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0&0&0\\\\\n",
    "    0&1&0&0\\\\\n",
    "    0&0&-1&0\\\\\n",
    "    0&0&0&-1\n",
    "    \\end{array}\n",
    "\\right)\n",
    "\\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\\\&=\n",
    "0\\\\\n",
    "&=1\\times p(1)+(-1)\\times p(-1)\\\\\n",
    "&=1\\times p(1)+(-1)\\times (1-p(1))\\\\\n",
    "&=p(1)-1+p(-1)\\\\\n",
    "\\Longrightarrow&p(1)=p(-1)=0.5\n",
    "\\end{align*}\n",
    "$$\n",
    "\n",
    "这说明测量的理论期望值为0,测量出+1,-1的概率均为50%,我们使用MindSpore Quantum提供的 [get_expectation()](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.get_expectation) 来验证结果:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0j"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.get_expectation(hams)  # 计算出模拟器当前量子态关于hams的期望值"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以看到,手动计算和使用 [get_expectation(hamiltonian)](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.get_expectation) 计算出的结果相同,符合预期。\n",
    "\n",
    "我们还可以对处于$\\frac{\\sqrt{2}}{2}|00⟩+\\frac{\\sqrt{2}}{2}|11⟩$态的系统上的q0,q1比特上均作用Pauli-Z测量。类似地构造出在q0,q1上做Pauli-Z测量对应的哈密顿量hams2:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "hams2 = Hamiltonian(QubitOperator('Z0') + QubitOperator('Z1'))   # 构建在q0,q1上作Pauli-Z测量的哈密顿量"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们同样可以手动计算出模拟器当前量子态在q0、q1上做Pauli-Z测量的期望值:\n",
    "\n",
    "$$\n",
    "\\begin{align*}\n",
    "E&=⟨\\psi|H|\\psi⟩\\\\&=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "(Z \\otimes I) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right)\n",
    "+\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "(I \\otimes Z) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\\\&=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&-1\\\\\n",
    "    \\end{array}\n",
    "\\right) \\otimes\n",
    "\\left(\n",
    "\\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&1\\\\\n",
    "\\end{array}\n",
    "\\right)\n",
    "\\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right)\n",
    "+\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&1\\\\\n",
    "    \\end{array}\n",
    "\\right) \\otimes\n",
    "\\left(\n",
    "\\begin{array}{l}\n",
    "    1&0\\\\\n",
    "    0&-1\\\\\n",
    "\\end{array}\n",
    "\\right)\n",
    "\\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\\\&=\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0&0&0\\\\\n",
    "    0&1&0&0\\\\\n",
    "    0&0&-1&0\\\\\n",
    "    0&0&0&-1\n",
    "    \\end{array}\n",
    "\\right)\n",
    "\\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right)\n",
    "+\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}& 0& 0& \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    1&0&0&0\\\\\n",
    "    0&-1&0&0\\\\\n",
    "    0&0&1&0\\\\\n",
    "    0&0&0&-1\n",
    "    \\end{array}\n",
    "\\right)\n",
    "\\times\n",
    "\\left(\n",
    "    \\begin{array}{l}\n",
    "    \\frac{\\sqrt{2}}{2}\\\\\n",
    "    0\\\\\n",
    "    0\\\\\n",
    "    \\frac{\\sqrt{2}}{2}\n",
    "    \\end{array}\n",
    "\\right) \\\\&=\n",
    "0+0 \\\\\n",
    "&=0\n",
    "\\end{align*}\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0j"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.set_qs(np.array([2**0.5 / 2, 0, 0, 2**0.5 / 2]))  # 设置模拟器状态\n",
    "sim.get_expectation(hams2)                            # 计算出模拟器当前量子态关于hams2的期望值"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "该操作不会改变量子态,我们查看当前量子态:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0.70710678+0.j, 0.        +0.j, 0.        +0.j, 0.70710678+0.j])"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim.get_qs()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以发现,量子态依然是最初设定的$\\frac{\\sqrt{2}}{2}|00⟩+\\frac{\\sqrt{2}}{2}|11⟩$\n",
    "\n",
    "我们学习认识了量子计算中重要的一个操作——测量,还使用MindSpore Quantum测量量子线路验证我们的理论结果,并使用不同可视化工具展示出测量结果。\n",
    "\n",
    "想学习MindSpore Quantum中量子线路的高阶操作,构建并训练量子经典混合神经网络,请查看 [get_expectation_with_grad()](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.get_expectation_with_grad) 和 [apply_hamiltonian()](https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.10/simulator/mindquantum.simulator.Simulator.html#mindquantum.simulator.Simulator.apply_hamiltonian) 的文档。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "<table border=\"1\">\n",
       "  <tr>\n",
       "    <th>Software</th>\n",
       "    <th>Version</th>\n",
       "  </tr>\n",
       "<tr><td>mindquantum</td><td>0.9.11</td></tr>\n",
       "<tr><td>scipy</td><td>1.10.1</td></tr>\n",
       "<tr><td>numpy</td><td>1.23.5</td></tr>\n",
       "<tr>\n",
       "    <th>System</th>\n",
       "    <th>Info</th>\n",
       "</tr>\n",
       "<tr><td>Python</td><td>3.9.16</td></tr><tr><td>OS</td><td>Linux x86_64</td></tr><tr><td>Memory</td><td>8.3 GB</td></tr><tr><td>CPU Max Thread</td><td>8</td></tr><tr><td>Date</td><td>Sat Dec 30 00:00:16 2023</td></tr>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<mindquantum.utils.show_info.InfoTable at 0x7f84b7028580>"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from mindquantum.utils.show_info import InfoTable\n",
    "\n",
    "InfoTable('mindquantum', 'scipy', 'numpy')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}