Source code for mindquantum.algorithm.library.quantum_fourier

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Quantum fourier transform."""

import numpy as np

from mindquantum.core.circuit import Circuit, SwapParts
from mindquantum.core.gates import H, PhaseShift
from mindquantum.utils.type_value_check import _check_input_type


def _rn(k):
    return PhaseShift(2 * np.pi / 2**k)


def _qft_unit(qubits):
    circ = Circuit(H.on(qubits[0]))
    for index, ctrl_qubit in enumerate(qubits[1:]):
        circ += _rn(index + 2).on(qubits[0], ctrl_qubit)
    return circ


[docs]def qft(qubits): """ Quantum fourier transform (QFT). The function of the quantum Fourier transform is similar to that of the classical Fourier transform. Note: Please refer to Nielsen, M., & Chuang, I. (2010) for more information. Args: qubits (list[int]): Qubits you want to apply quantum fourier transform. Examples: >>> from mindquantum.algorithm.library import qft >>> print(qft([0, 1]).get_qs(ket=True)) 1/2¦00⟩ 1/2¦01⟩ 1/2¦10⟩ 1/2¦11⟩ Returns: Circuit, circuit that can do fourier transform. """ _check_input_type('qubits', (list, range), qubits) circuit = Circuit() n_qubits = len(qubits) for i in range(n_qubits): circuit += _qft_unit(qubits[i:]) if n_qubits > 1: part1 = [] part2 = [] for j in range(n_qubits // 2): part1.append(qubits[j]) part2.append(qubits[n_qubits - 1 - j]) circuit += SwapParts(part1, part2) return circuit