mindquantum.framework.MQN2EncoderOnlyOps
- class mindquantum.framework.MQN2EncoderOnlyOps(expectation_with_grad)[source]
MindQuantum operator that get the square of absolute value of expectation of a hamiltonian on a quantum state evaluated by a parameterized quantum circuit (PQC). This PQC should contains a encoder circuit only. This ops is PYNATIVE_MODE supported only.
- Parameters
expectation_with_grad (GradOpsWrapper) – a grad ops that receive encoder data and ansatz data and return the square of absolute value of expectation value and gradient value of parameters respect to expectation.
- Inputs:
ans_data (Tensor) - Tensor with shape \(N\) for ansatz circuit, where \(N\) means the number of ansatz parameters.
- Outputs:
Tensor, The square of absolute value of expectation value of the hamiltonian.
- Supported Platforms:
GPU
,CPU
Examples
>>> import numpy as np >>> from mindquantum import Circuit, Hamiltonian, QubitOperator >>> from mindquantum import Simulator, MQN2EncoderOnlyOps >>> import mindspore as ms >>> ms.context.set_context(mode=ms.context.PYNATIVE_MODE, device_target="CPU") >>> circ = Circuit().ry('a', 0).h(0).rx('b', 0) >>> ham = Hamiltonian(QubitOperator('Z0')) >>> sim = Simulator('projectq', 1) >>> grad_ops = sim.get_expectation_with_grad(ham, circ, encoder_params_name=circ.params_name) >>> data = np.array([[0.1, 0.2], [0.3, 0.4]]) >>> f, g = grad_ops(data) >>> np.abs(f) ** 2 array([[0.00957333], [0.07408856]]) >>> net = MQN2EncoderOnlyOps(grad_ops) >>> f_ms = net(ms.Tensor(data)) >>> f_ms Tensor(shape=[2, 1], dtype=Float32, value= [[ 9.57333017e-03], [ 7.40885586e-02]])