mindquantum.framework.MQOps
- class mindquantum.framework.MQOps(expectation_with_grad)[source]
MindQuantum operator.
A quantum circuit evolution operator that include encoder and ansatz circuit, who return the expectation of given hamiltonian w.r.t final state of parameterized quantum circuit (PQC). This ops is PYNATIVE_MODE supported only.
- Parameters
expectation_with_grad (GradOpsWrapper) – a grad ops that receive encoder data and ansatz data and return the expectation value and gradient value of parameters respect to expectation.
- Inputs:
enc_data (Tensor) - Tensor of encoder data with shape
that you want to encode into quantum state, where means the batch size and means the number of encoder parameters.ans_data (Tensor) - Tensor with shape
for ansatz circuit, where means the number of ansatz parameters.
- Outputs:
Tensor, The expectation value of the hamiltonian.
- Supported Platforms:
GPU
,CPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindquantum.core.circuit import Circuit >>> from mindquantum.core.operators import Hamiltonian, QubitOperator >>> from mindquantum.framework import MQOps >>> from mindquantum.simulator import Simulator >>> ms.set_context(mode=ms.PYNATIVE_MODE, device_target="CPU") >>> enc = Circuit().ry('a', 0).as_encoder() >>> ans = Circuit().h(0).rx('b', 0) >>> ham = Hamiltonian(QubitOperator('Z0')) >>> sim = Simulator('mqvector', 1) >>> grad_ops = sim.get_expectation_with_grad(ham, enc + ans) >>> enc_data = np.array([[0.1]]) >>> ans_data = np.array([0.2]) >>> f, g_enc, g_ans = grad_ops(enc_data, ans_data) >>> f array([[0.0978434+0.j]]) >>> net = MQOps(grad_ops) >>> f_ms = net(ms.Tensor(enc_data), ms.Tensor(ans_data)) >>> f_ms Tensor(shape=[1, 1], dtype=Float32, value= [[ 9.78433937e-02]])