mindquantum.algorithm.nisq.PCHeaXYZ2F

class mindquantum.algorithm.nisq.PCHeaXYZ2F(n_qubits: int, depth: int, prefix: str = '', suffix: str = '')[source]

PCHeaXYZ2F ansatz.

../../_images/PCHeaXYZ2F.png

For more information about this ansatz, please refer to Physics-Constrained Hardware-Efficient Ansatz on Quantum Computers that is Universal, Systematically Improvable, and Size-consistent.

Parameters
  • n_qubits (int) – total qubits number of this ansatz.

  • depth (int) – depth of ansatz.

  • prefix (str) – prefix of parameters. Default: ''.

  • suffix (str) – suffix of parameters. Default: ''.

Examples

>>> from mindquantum.algorithm.nisq import PCHeaXYZ2F
>>> PCHeaXYZ2F(3, 1).circuit
      ┏━━━━━━━━┓ ┏━━━━━━━━┓                 ┏━━━━━━━━━━━━━━━━━━┓
q0: ──┨ RX(p0) ┠─┨ RY(p3) ┠─────────────────┨                  ┠────────────────────────────────↯─
      ┗━━━━━━━━┛ ┗━━━━━━━━┛                 ┃                  ┃
      ┏━━━━━━━━┓ ┏━━━━━━━━┓ ┏━━━━━━━━━━━━━┓ ┃ FSim(θ=p7, φ=p6) ┃ ┏━━━━━━━━━━━━┓
q1: ──┨ RX(p1) ┠─┨ RY(p4) ┠─┨ RY(-1/2*p6) ┠─┨                  ┠─┨ RY(1/2*p6) ┠─────────────────↯─
      ┗━━━━━━━━┛ ┗━━━━━━━━┛ ┗━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━┛
      ┏━━━━━━━━┓ ┏━━━━━━━━┓                                                     ┏━━━━━━━━━━━━━┓
q2: ──┨ RX(p2) ┠─┨ RY(p5) ┠─────────────────────────────────────────────────────┨ RY(-1/2*p8) ┠─↯─
      ┗━━━━━━━━┛ ┗━━━━━━━━┛                                                     ┗━━━━━━━━━━━━━┛
                                          ┏━━━━━━━━━┓
q0: ──────────────────────────────────────┨ RZ(p10) ┠────────────────────────────────────────↯─
                                          ┗━━━━━━━━━┛
      ┏━━━━━━━━━━━━━━━━━━┓                ┏━━━━━━━━━┓                 ┏━━━━━━━━━━━━━━━━━━━━┓
q1: ──┨                  ┠────────────────┨ RZ(p11) ┠─────────────────┨                    ┠─↯─
      ┃                  ┃                ┗━━━━━━━━━┛                 ┃                    ┃
      ┃ FSim(θ=p9, φ=p8) ┃ ┏━━━━━━━━━━━━┓ ┏━━━━━━━━━┓ ┏━━━━━━━━━━━━━┓ ┃ FSim(θ=-p9, φ=-p8) ┃
q2: ──┨                  ┠─┨ RY(1/2*p8) ┠─┨ RZ(p12) ┠─┨ RY(-1/2*p8) ┠─┨                    ┠─↯─
      ┗━━━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━┛ ┗━━━━━━━━━┛ ┗━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━━━━━┛
                                     ┏━━━━━━━━━━━━━━━━━━━━┓                ┏━━━━━━━━━┓ ┏━━━━━━━━━┓
q0: ─────────────────────────────────┨                    ┠────────────────┨ RY(-p3) ┠─┨ RX(-p0) ┠───
                                     ┃                    ┃                ┗━━━━━━━━━┛ ┗━━━━━━━━━┛
                     ┏━━━━━━━━━━━━━┓ ┃ FSim(θ=-p7, φ=-p6) ┃ ┏━━━━━━━━━━━━┓ ┏━━━━━━━━━┓ ┏━━━━━━━━━┓
q1: ─────────────────┨ RY(-1/2*p6) ┠─┨                    ┠─┨ RY(1/2*p6) ┠─┨ RY(-p4) ┠─┨ RX(-p1) ┠───
                     ┗━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━┛ ┗━━━━━━━━━┛ ┗━━━━━━━━━┛
      ┏━━━━━━━━━━━━┓                                                       ┏━━━━━━━━━┓ ┏━━━━━━━━━┓
q2: ──┨ RY(1/2*p8) ┠───────────────────────────────────────────────────────┨ RY(-p5) ┠─┨ RX(-p2) ┠───
      ┗━━━━━━━━━━━━┛                                                       ┗━━━━━━━━━┛ ┗━━━━━━━━━┛