# MindSpore Insight Commands [](https://gitee.com/mindspore/docs/blob/r2.2/docs/mindinsight/docs/source_en/mindinsight_commands.md) ## View the Command Help Information ```bash mindinsight --help ``` ## View the Version Information ```bash mindinsight --version ``` ## Start the Service > MindSpore Insight service only supports local access by default. For remote access, please modify the configuration file `mindinsight\conf\constants.py`. > Modify the `HOST` in the file to the server IP, and make sure that the startup port has been opened or the firewall has been closed. ```text mindinsight start [-h] [--workspace <WORKSPACE>] [--port <PORT>] [--url-path-prefix <URL_PATH_PREFIX>] [--reload-interval <RELOAD_INTERVAL>] [--summary-base-dir <SUMMARY_BASE_DIR>] [--enable-debugger <ENABLE_DEBUGGER>] [--debugger-port <DEBUGGER_PORT>] [--offline-debugger-mem-limit <OFFLINE_DEBUGGER_MEMORY_LIMIT>] [--max-offline-debugger-session-num <MAX_OFFLINE_DEBUGGER_SESSION_NUMBER>] ``` Optional parameters are as follows: |Name|Argument|Description|Type|Default|Scope|Specifications| |---|---|---|---|---|---|---| |`-h, --help`|Optional|Displays the help information about the start command.|-|-|-|-| |`--workspace <WORKSPACE>`|Optional|Specifies the path for storing MindSpore Insight logs.|String|$HOME/mindinsight|-|-| |`--port <PORT>`|Optional|Specifies the port number of the web visualization service.|Integer|8080|1~65535|-| |`--url-path-prefix <URL_PATH_PREFIX>`|Optional|Specifies the URL path prefix of the web visualization service.|String|Empty string|-|URL path prefix consists of segments separated by slashes. Each segment supports alphabets / digits / underscores / dashes / dots, but not single dot or double dots.| |`--reload-interval <RELOAD_INTERVAL>`|Optional|Specifies the interval (unit: second) for loading data.|Integer|3|0~300|The value 0 indicates that data is loaded only once.| |`--summary-base-dir <SUMMARY_BASE_DIR>`|Optional|Specifies the root directory for loading training log data.|String|./|-|MindSpore Insight traverses the direct subdirectories in this directory and searches for log files. If a direct subdirectory contains log files, it is identified as the log file directory. If a root directory contains log files, it is identified as the log file directory. In the ModelArts development environment, this parameter can be specified as an OBS path. Please refer to [ModelArts documentation](https://support.huaweicloud.com/devtool-modelarts/develop-modelarts-0068.html) for more information.| |`--enable-debugger <ENABLE_DEBUGGER>`|Optional|Whether to launch the MindSpore Insight Debugger.|Boolean|False|True/False/1/0|The debugger entry can be shown on MindSpore Insight UI only when MindSpore Insight Debugger is launched.| |`--debugger-port <DEBUGGER_PORT>`|Optional|Specifies the port number of the debugger server.|Integer|50051|1~65535|-| |`--offline-debugger-mem-limit <OFFLINE_DEBUGGER_MEMORY_LIMIT>`|Optional|Specifies the maximum memory limit of a single offline debugger session. When the offline debugger cannot be executed due to insufficient memory, set it according to the device memory.|Integer|16*1024|6*1024~The upper limit of int32|-| |`--max-offline-debugger-session-num <MAX_OFFLINE_DEBUGGER_SESSION_NUMBER>`|Optional|Specifies the maximum session number of the offline debugger. The session number refers to the amount of training jobs that can be debugged at the same time.|Integer|2|1~2|-| |`--max-graph-node-size <MAX_GRAPH_NODE_SIZE >`|Optional|Set the maximum number of graph nodes loaded by the debugger.|Integer|100000|1~2000000|-| `--workspace` log directory description: | Module name | Log directory description | Log format | | ------------- | ------------------------------------------------------------ | ----------------------------------------- | | datavisual | Training kanban module, it records all the logs of training Kanban module. | `datavisual.<PORT>.log` | | debugger | Debugger module, it records all logs of the debugger module. | `debugger.<PORT>.log` | | explainer | Explain the AI module, it records all logs that explain the data parsed by the AI module. | `explainer.<PORT>.log` | | gunicorn | Web service module, it records all logs of the Web service module. | `access.<PORT>.log`<br>`error.<PORT>.log` | | lineage | Traceability module, it records all logs of the traceability module. | `lineage.<PORT>.log` | | notebook | Record all logs using MindSpore Insight in the ModelArts notebook. | `notebook.<PORT>.log` | | optimizer | Optimizer module, it records all optimizer module logs. | `optimizer.<PORT>.log` | | parse_summary | Summary file parsing module, it records all logs when using the summary file parsing module. | `parse_summary.<PORT>.log` | | profiler | Performance analysis module, it records all logs of the performance analysis module. | `profiler.<PORT>.log` | | restful_api | RESTFul API module, it records all RESTFul API interaction logs. | `restful_api.<PORT>.log` | | scripts | Start and stop the MindSpore Insight module, it records all MindSpore Insight starts and stops. | `start.<PORT>.log`<br>`stop.<PORT>.log` | | utils | Public module, it records all logs of the public module. | `utils.<PORT>.log` | Note: There is one log file for each module, but when a log file exceeds 50M, it will be renamed and archived in the format of `<module name>_<PORT>.log.<id>` ,`module name` indicates the module name, `PORT` indicates the PORT number, and `ID` indicates the number of file renaming and archiving times. > When the service is started, the parameter values of the command line are saved as the environment variables of the process and start with `MINDINSIGHT_`, for example, `MINDINSIGHT_PORT`, `MINDINSIGHT_WORKSPACE`, etc. Execute command: ```bash mindinsight start --port 8000 --workspace /path/to/workspace/dir --summary-base-dir /path/to/summary/base/dir ``` The startup is successful if it prompts as follows: ```text Web address: http://127.0.0.1:8000 service start state: success ``` ## View the Service Process Information MindSpore Insight provides user with web services. Run the following command to view the running web service process: ```bash ps -ef | grep mindinsight ``` Run the following command to access the working directory `WORKSPACE` corresponding to the service process based on the service process ID: ```text lsof -p <PID> | grep access ``` Output the working directory `WORKSPACE` as follows: ```text gunicorn <PID> <USER> <FD> <TYPE> <DEVICE> <SIZE/OFF> <NODE> <WORKSPACE>/log/gunicorn/access.log ``` ## Stop the Service ```text mindinsight stop [-h] [--port PORT] ``` Optional parameters are as follows: |Name|Argument|Description|Type|Default|Scope|Specifications| |---|---|---|---|---|---|---| |`-h, --help`|Optional|Displays the help information about the stop command.|-|-|-|-| |`--port <PORT>`|Optional|Specifies the port number of the web visualization service.|Integer|8080|1~65535|-| Execute command: ```bash mindinsight stop --port 8000 ``` The shutdown is successful if it prompts as follows: ```text Stop mindinsight service successfully ``` ## Parse Summary MindSpore Insight provides tools for parsing summary log files. Users can save the scalars in the summary log file into a csv file and the images into a png file through the commands, which is convenient for viewing and further processing. ```text mindinsight parse_summary [--summary-dir] [--output] ``` Optional parameters are as follows: |Name|Argument|Description|Type|Default|Scope|Specifications| |---|---|---|---|---|---|---| |`--summary-dir`|Optional|Specifies the root directory of summary files. If the directory contains multiple summary files, only the latest summary file is parsed.|String|./|-|The summary file directory needs to be readable and executable, and the summary file needs to be readable.| |`--output`|Optional|Specifies the root directory for saving output files.|String|./|-|-| Execute command: ```bash mindinsight parse_summary --summary-dir ./ --output ./ ``` The output directory structure is as follows: ```text └─output_{datetime} ├─image │ └─{tag}_{step}.png │ └─scalar.csv ``` In which, - output_{datetime} is the output directory. The rule is 'output_yyyyMMdd_HHmmss_SSSSSS' including year, month, day, hour, minute, second and microseconds. - {tag}\_{step}.png is the image in training process. 'tag' and 'step' are the tag and step in the training (special characters in tag are deleted and '/' is replaced by '_'). - scalar.csv is the file which save scalars (encoding: 'utf-8'). ## Use Mindoptimizer to Tune Hyperparameters MindSpore Insight provides parameters tuning command. The command-line interface (CLI) provides the following commands: ```text usage: mindoptimizer [-h] [--version] [--config <CONFIG>] [--iter <ITER>] ``` Optional parameters are as follows: |Name|Argument|Description|Type|Default|Scope|Specifications| |---|---|---|---|---|---|---| |`-h, --help`|Optional|Displays the help information about the start command.|-|-|-|-| |`--config <CONFIG>`|Required|Specifies the configuration file.|String|-|-|Physical file path (file:/path/to/config.yaml), and the file format is yaml.| |`--iter <ITER>`|Optional|Specifies the run times for tuning parameters|Integer|1|Positive integer|-|