mindformers.models.auto.configuration_auto 源代码

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright 2024-2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Auto Config class"""

import os
import re
import shutil
import warnings
import importlib
from collections import OrderedDict
from typing import List, Union

from mindformers.models.utils import CONFIG_NAME
from mindformers.mindformer_book import print_dict, MindFormerBook
from mindformers.models.build_config import build_model_config
from mindformers.models.configuration_utils import PretrainedConfig
from mindformers.tools.logger import logger
from mindformers.tools.hub import resolve_trust_remote_code, get_class_from_dynamic_module
from mindformers.tools.generic import experimental_mode_func_checker, is_experimental_mode
from mindformers.tools.register import MindFormerConfig

CONFIG_MAPPING_NAMES = OrderedDict(
    [
        ("glm2", "ChatGLM2Config"),
        ("llama", "LlamaConfig"),
    ]
)

MODEL_NAMES_MAPPING = OrderedDict(
    [
        ("glm2", "ChatGLM2Model"),
        ("llama", "LlamaModel")
    ]
)

EXP_ERROR_MSG = "The input yaml_name_or_path should be a path to yaml file, e.g. " \
                "'run_xxx_model.yaml', or a model name supported, e.g. llama2_7b."


def config_class_to_model_type(config):
    """Converts a config class name to the corresponding model type"""
    for key, cls in CONFIG_MAPPING_NAMES.items():
        if cls == config:
            return key
    # if key not found check in extra content
    for key, cls in CONFIG_MAPPING._extra_content.items():  # pylint: disable=W0212
        if cls.__name__ == config:
            return key
    return None


class _LazyConfigMapping(OrderedDict):
    """
    A dictionary that lazily load its values when they are requested.
    """

    # pylint: disable=W0231
    def __init__(self, mapping):
        self._mapping = mapping
        self._extra_content = {}
        self._modules = {}

    def __getitem__(self, key):
        """return module attributes based on module name"""
        if key in self._extra_content:
            return self._extra_content[key]
        if key not in self._mapping:
            raise KeyError(key)
        value = self._mapping[key]
        if key not in self._modules:
            self._modules[key] = importlib.import_module(f".{key}", "mindformers.models")
        if hasattr(self._modules[key], value):
            return getattr(self._modules[key], value)

        # Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the
        # object at the top level.
        mindformers_module = importlib.import_module("mindformers")
        return getattr(mindformers_module, value)

    def keys(self):
        return list(self._mapping.keys()) + list(self._extra_content.keys())

    def values(self):
        return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())

    def items(self):
        return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())

    def __iter__(self):
        return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))

    def __contains__(self, item):
        return item in self._mapping or item in self._extra_content

    def register(self, key, value, exist_ok=False):
        """
        Register a new configuration in this mapping.
        """
        if key in self._mapping.keys() and not exist_ok:
            raise ValueError(f"'{key}' is already used by a Mindformers config, pick another name.")
        self._extra_content[key] = value


CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)


def _get_class_name(model_class: Union[str, List[str]]):
    if isinstance(model_class, (list, tuple)):
        return " or ".join([f"[`{c}`]" for c in model_class if c is not None])
    return f"[`{model_class}`]"


def _list_model_options(indent, config_to_class=None, use_model_types=True):
    """doc"""
    if config_to_class is None and not use_model_types:
        raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
    if use_model_types:
        if config_to_class is None:
            model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()}
        else:
            model_type_to_name = {
                model_type: _get_class_name(model_class)
                for model_type, model_class in config_to_class.items()
                if model_type in MODEL_NAMES_MAPPING
            }
        lines = [
            f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
            for model_type in sorted(model_type_to_name.keys())
        ]
    else:
        config_to_name = {
            CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
            for config, clas in config_to_class.items()
            if config in CONFIG_MAPPING_NAMES
        }
        config_to_model_name = {
            config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
        }
        lines = [
            f"{indent}- [`{config_name}`] configuration class:"
            f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
            for config_name in sorted(config_to_name.keys())
        ]
    return "\n".join(lines)


def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
    """doc"""
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
            if use_model_types:
                indent = f"{indent}    "
            lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current"
                f" docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
        return fn

    return docstring_decorator


[文档]class AutoConfig: r""" This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the ``from_pretrained()`` class method. This class cannot be instantiated directly using \_\_init\_\_() (throws an error). Examples: >>> from mindformers import AutoConfig >>> # 1) instantiates a config by yaml model name >>> config_a = AutoConfig.from_pretrained('configs/llama2/predict_llama2_7b.yaml') >>> # 2) instantiates a config by json file >>> config_b = AutoConfig.from_pretrained('./config.json') >>> # 3) instantiates a config by directory containing a configuration json file >>> config_c = AutoConfig.from_pretrained('./dir/') >>> # 4) instantiates a config by model_id from modelers.cn >>> config_d = AutoConfig.from_pretrained('MindSpore-Lab/glm2_6b') """ _support_list = MindFormerBook.get_config_support_list() _model_type = 0 _model_name = 1 def __init__(self): raise EnvironmentError( "AutoConfig is designed to be instantiated " "using the `AutoConfig.from_pretrained(yaml_name_or_path)` method." ) @classmethod def invalid_yaml_name(cls, yaml_name_or_path): """Check whether it is a valid yaml name""" if yaml_name_or_path.startswith('mindspore'): # Adaptation the name of yaml at the beginning of mindspore, # the relevant file will be downloaded from the Xihe platform. # such as "mindspore/vit_base_p16" yaml_name_or_path = yaml_name_or_path.split('/')[cls._model_name] if not yaml_name_or_path.split('_')[cls._model_type] in cls._support_list.keys(): return True local_model_type = yaml_name_or_path.split('_')[cls._model_type] local_model_list = cls._support_list[local_model_type] if not isinstance(local_model_list, dict): if yaml_name_or_path in local_model_list: return False raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}\', ' f'please select from {local_model_list}') local_model_names = local_model_list.keys() if len(yaml_name_or_path.split('_')) <= cls._model_name or \ not yaml_name_or_path.split('_')[cls._model_name] in local_model_names: raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}\', ' f'please select from {local_model_list}') local_model_name = yaml_name_or_path.split('_')[cls._model_name] if yaml_name_or_path not in local_model_list[local_model_name]: raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}_{local_model_name}\', ' f'please select from {local_model_list[local_model_name]}') return False @classmethod def for_model(cls, model_type: str, *args, **kwargs): if model_type in CONFIG_MAPPING: config_class = CONFIG_MAPPING[model_type] return config_class(*args, **kwargs) raise ValueError( f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}" )
[文档] @classmethod def from_pretrained(cls, yaml_name_or_path, **kwargs): """ From pretrain method, which instantiates a config by YAML, JSON, directory or model_id from modelers.cn. Warning: The API is experimental and may have some slight breaking changes in the next releases. Args: yaml_name_or_path (str): YAML file path, JSON file path, a folder containing a config.json file, or a model_id from modelers.cn. The last three are experimental features. kwargs (Dict[str, Any], optional): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Returns: A model config, which inherited from PretrainedConfig. """ pretrained_model_name_or_path = kwargs.pop("pretrained_model_name_or_path", None) if pretrained_model_name_or_path is not None: yaml_name_or_path = pretrained_model_name_or_path config = cls.get_config_experimental_mode(yaml_name_or_path, **kwargs) if is_experimental_mode( yaml_name_or_path) else cls.get_config_origin_mode(yaml_name_or_path, **kwargs) return config
@classmethod def get_config_origin_mode(cls, yaml_name_or_path, **kwargs): """Get config object by from_pretrained with original mode :param yaml_name_or_path: yaml file name or corresponding path :param kwargs: kwargs params :return: config object """ if not isinstance(yaml_name_or_path, str): raise TypeError(f"yaml_name_or_path should be a str," f" but got {type(yaml_name_or_path)}.") if os.path.exists(yaml_name_or_path): if not yaml_name_or_path.endswith(".yaml"): raise ValueError(f"{yaml_name_or_path} should be a .yaml file for model" " config.") config_args = MindFormerConfig(yaml_name_or_path) logger.info("the content in %s is used for" " config building.", yaml_name_or_path) elif cls.invalid_yaml_name(yaml_name_or_path): raise ValueError(f"{yaml_name_or_path} is not a supported" f" model type or a valid path to model config." f" supported model could be selected from {cls._support_list}.") else: yaml_name = yaml_name_or_path if yaml_name_or_path.startswith('mindspore'): # Adaptation the name of yaml at the beginning of mindspore, # the relevant file will be downloaded from the Xihe platform. # such as "mindspore/vit_base_p16" yaml_name = yaml_name_or_path.split('/')[cls._model_name] checkpoint_path = os.path.join(MindFormerBook.get_xihe_checkpoint_download_folder(), yaml_name.split('_')[cls._model_type]) else: # Default the name of yaml, # the relevant file will be downloaded from the Obs platform. # such as "vit_base_p16" checkpoint_path = os.path.join(MindFormerBook.get_default_checkpoint_download_folder(), yaml_name_or_path.split('_')[cls._model_type]) if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path, exist_ok=True) yaml_file = os.path.join(checkpoint_path, yaml_name + ".yaml") def get_default_yaml_file(model_name): default_yaml_file = "" for model_dict in MindFormerBook.get_trainer_support_task_list().values(): if model_name in model_dict: default_yaml_file = model_dict.get(model_name) break return default_yaml_file if not os.path.exists(yaml_file): default_yaml_file = get_default_yaml_file(yaml_name) if os.path.realpath(default_yaml_file) and os.path.exists(default_yaml_file): shutil.copy(default_yaml_file, yaml_file) logger.info("default yaml config in %s is used.", yaml_file) else: raise FileNotFoundError(f'default yaml file path must be correct, but get {default_yaml_file}') config_args = MindFormerConfig(yaml_file) config_args.model.model_config.update(**kwargs) config = build_model_config(config_args.model.model_config) MindFormerBook.set_model_config_to_name(id(config), config_args.model.arch.type) return config @classmethod @experimental_mode_func_checker(EXP_ERROR_MSG) def get_config_experimental_mode(cls, pretrained_model_name_or_path, **kwargs): """Get config object by from_pretrained with experimental mode :param pretrained_model_name_or_path: model file name or corresponding path :return: config object """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. " "Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token kwargs["_from_auto"] = True kwargs["name_or_path"] = pretrained_model_name_or_path trust_remote_code = kwargs.pop("trust_remote_code", None) code_revision = kwargs.pop("code_revision", None) config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"] has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: class_ref = config_dict["auto_map"]["AutoConfig"] config_class = get_class_from_dynamic_module( class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs ) if os.path.isdir(pretrained_model_name_or_path): config_class.register_for_auto_class() return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs) if "model_type" in config_dict: config_class = CONFIG_MAPPING[config_dict["model_type"]] return config_class.from_dict(config_dict, **unused_kwargs) # Fallback: use pattern matching on the string. # We go from longer names to shorter names to catch roberta before bert (for instance) for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True): if pattern in str(pretrained_model_name_or_path): return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs) raise ValueError( f"Unrecognized model in {pretrained_model_name_or_path}. " f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings " f"in its name: {', '.join(CONFIG_MAPPING.keys())}" )
[文档] @classmethod def show_support_list(cls): """show support list method""" logger.info("support list of %s is:", cls.__name__) print_dict(cls._support_list)
@classmethod def get_support_list(cls): """get support list method""" return cls._support_list
[文档] @staticmethod def register(model_type, config, exist_ok=False): r""" Register a new configuration for this class. Warning: The API is experimental and may have some slight breaking changes in the next releases. Args: model_type (str): The model type like "bert" or "gpt". config (PretrainedConfig): The config to register. exist_ok (bool, optional): If set to True, no error will be raised even if model_type already exists. Default: ``False``. """ if issubclass(config, PretrainedConfig) and config.model_type != model_type: raise ValueError( "The config you are passing has a `model_type` attribute that is not consistent with the model type " f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they " "match!" ) CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)