mindformers.core.ProfileMonitor
- class mindformers.core.ProfileMonitor(start_step=1, stop_step=10, output_path=None, start_profile=True, profile_rank_ids=None, profile_pipeline=False, profile_communication=False, profile_memory=False, config=None, profiler_level=0, with_stack=False, data_simplification=True, **kwargs)[source]
Profile analysis in training.
- Parameters
start_step (int, optional) – The step to start profiling. Default:
1
.stop_step (int, optional) – The step to stop profiling. Default:
10
.output_path (str, optional) – The result of profiling will be saved in this path. Default:
None
.start_profile (str, optional) – Whether to enable profiling. Default:
True
.profile_rank_ids (list, optional) – Specify rank ids to enable profiling. Default:
None
(All rank ids are enabled).profile_pipeline (str, optional) – Whether to enable profiling on one card of each parallel stage. Default:
False
.profile_communication (str, optional) – Whether to collect communication performance data during multi-device training. Default:
False
.profile_memory (str, optional) – Whether to collect Tensor memory data. Default:
False
.config (dict, optional) – Configuration items, used to profile relevant configuration information, such as parallel configuration. Default:
None
.profiler_level (int, optional) –
Collection level of profiling data(0, 1, 2). Default:
0
.0: The most streamlined level of performance data collection, only collecting execution time data for computational operators and basic data for large communication operators.
1: In addition to level 0, extra data is collected for CANN layer AscendCL, AICORE performance data, and small communication operators.
2: In addition to level 1, extra data is collected for graph compile level O2 and Runtime in the CANN layer.
with_stack (str, optional) – Whether to collect Python-side stack trace data. Default:
False
.data_simplification (str, optional) – Whether to enable data simplification, which will delete the FRAMEWORK directory and other extraneous data after exporting profiling data. Default:
True
.
Examples
>>> from mindformers.core import ProfileMonitor >>> monitor = ProfileMonitor(output_path='./profile_dir')