mindelec.geometry.geometry_2d 源代码

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#pylint: disable=W0223
"""2d geometry"""

from __future__ import absolute_import
import numpy as np
import numpy.linalg as LA
from mindspore import log as logger

from .geometry_base import Geometry, DATA_TYPES, GEOM_TYPES
from .geometry_nd import HyperCube
from .utils import sample, polar_sample, generate_mesh


[文档]class Disk(Geometry): r""" Definition of Disk object. Args: name (str): name of the disk. center (Union[tuple[int, int], tuple[float, float], list[int, int], list[float, float], numpy.ndarray]): center coordinates of the disk. radius (Union[int, float]): radius of the disk. dtype (numpy.dtype): data type of sampled point data type. Default: ``numpy.float32``. sampling_config (SamplingConfig): sampling configuration. Default: ``None``. Raises: ValueError: If `center` is neither list nor tuple of length 2. ValueError: If `radius` is negative. Supported Platforms: ``Ascend`` Examples: >>> from easydict import EasyDict as edict >>> from mindelec.geometry import create_config_from_edict, Disk >>> disk_mesh = edict({'domain': edict({'random_sampling': False, 'size' : [100, 180]}), ... 'BC': edict({'random_sampling': False, 'size': 200, 'with_normal' : True,})}) >>> disk = Disk("disk", (-1.0, 0), 2.0, sampling_config=create_config_from_edict(disk_mesh)) >>> domain = disk.sampling(geom_type="domain") >>> bc, bc_normal = disk.sampling(geom_type="BC") >>> print(bc.shape) (200, 2) """ def __init__(self, name, center, radius, dtype=np.float32, sampling_config=None): self.sampling_config = sampling_config if not isinstance(center, (np.ndarray, tuple, list)): raise TypeError("Disk: {}'s center should be tuple or list, but got: {}, type: {}".format( name, center, type(center))) self.center = np.array(center) if len(self.center) != 2: raise ValueError("Disk: {}'s center should be 2D array, but got: {}, dim: {}".format( name, self.center, len(self.center))) for ele in self.center: if not isinstance(ele, DATA_TYPES): raise TypeError("data type of center should be int/float, but got: {}, type: {}".format( self.center, type(ele) )) if not isinstance(radius, (int, float)) or isinstance(radius, bool): raise TypeError("data type of radius should be int/float, but got: {}, type: {}".format( radius, type(radius) )) if radius <= 0: raise ValueError("Disk: {}'s radius should not be non-positive, but got: {}".format(name, radius)) self.radius = radius self.columns_dict = {} coord_min = self.center - self.radius coord_max = self.center + self.radius super(Disk, self).__init__(name, 2, coord_min, coord_max, dtype, sampling_config) def _inside(self, points, strict=False): """whether inside domain""" return LA.norm(points - self.center, axis=-1) < self.radius if strict \ else LA.norm(points - self.center, axis=-1) <= self.radius def _on_boundary(self, points): """whether on domain boundary""" return np.isclose(LA.norm(points - self.center, axis=-1), self.radius) def _boundary_normal(self, points): """get the boundary normal vector""" points = points[self._on_boundary(points)] r = points - self.center r_norm = LA.norm(r, axis=-1, keepdims=True) return r / r_norm def _random_disk_boundary_points(self, need_normal=False): """Randomly generate boundary points""" size = self.sampling_config.bc.size sampler = self.sampling_config.bc.sampler theta = 2 * np.pi * sample(size, 1, sampler) circle_xy = np.hstack([np.cos(theta), np.sin(theta)]) data = self.center + circle_xy * self.radius data = np.reshape(data, (-1, self.dim)) if need_normal: normal_data = self._boundary_normal(data) normal_data = np.reshape(normal_data, (-1, self.dim)) return data, normal_data return data def _random_disk_domain_points(self): """Randomly generate domain points""" size = self.sampling_config.domain.size sampler = self.sampling_config.domain.sampler r_theta = sample(size, 2, sampler) data = self.center + polar_sample(r_theta) * self.radius data = np.reshape(data, (-1, self.dim)) return data def _grid_disk_boundary_points(self, need_normal=False): """Generate uniformly distributed domain points""" size = self.sampling_config.bc.size theta = np.linspace(0, 2 * np.pi, num=size, endpoint=False) cartesian = np.vstack((np.cos(theta), np.sin(theta))).T data = self.radius * cartesian + self.center data = np.reshape(data, (-1, self.dim)) if need_normal: normal_data = self._boundary_normal(data) normal_data = np.reshape(normal_data, (-1, self.dim)) return data, normal_data return data def _grid_disk_domain_points(self): """Generate uniformly distributed domain points""" mesh_size = self.sampling_config.domain.size if len(mesh_size) != self.dim: raise ValueError("For grid sampling, length of mesh_size list: {} should be equal to dimension: {}".format( mesh_size, self.dim )) r_theta_mesh = generate_mesh(np.array([0, 0]), np.array([1, 1]), mesh_size, endpoint=False) cartesian = np.zeros(r_theta_mesh.shape) cartesian[:, 0] = r_theta_mesh[:, 0] * self.radius * np.cos(2 * np.pi * r_theta_mesh[:, 1]) cartesian[:, 1] = r_theta_mesh[:, 0] * self.radius * np.sin(2 * np.pi * r_theta_mesh[:, 1]) data = cartesian + self.center data = np.reshape(data, (-1, self.dim)) return data
[文档] def sampling(self, geom_type="domain"): """ sampling domain and boundary points. Args: geom_type (str): geometry type: can be ``'domain'`` or ``'BC'``. Default: ``'domain'``. - ``'domain'``, feasible domain of the problem. - ``'BC'``, boundary of the problem. Returns: Numpy.array. If the with_normal property of boundary configuration is true, returns 2D numpy array with boundary normal vectors. Otherwise, returns 2D numpy array without boundary normal vectors. Raises: ValueError: If `config` is None. KeyError: If `geom_type` is ``'domain'`` but `config.domain` is ``None``. KeyError: If `geom_type` is ``'BC'`` but `config.bc` is ``None``. ValueError: If `geom_type` is neither ``'BC'`` nor ``'domain'``. """ config = self.sampling_config if config is None: raise ValueError("Sampling config for {}:{} is None, please call set_sampling_config method to set".format( self.geom_type, self.name)) if not isinstance(geom_type, str): raise TypeError("geom_type shouild be string, but got {} with type {}".format(geom_type, type(geom_type))) if geom_type not in GEOM_TYPES: raise ValueError("Unsupported geom_type: {}, only {} are supported now".format(geom_type, GEOM_TYPES)) if geom_type.lower() == "domain": if config.domain is None: raise KeyError("Sampling config for domain of {}:{} should not be none" .format(self.geom_type, self.name)) logger.info("Sampling domain points for {}:{}, config info: {}" .format(self.geom_type, self.name, config.domain)) column_name = self.name + "_domain_points" if config.domain.random_sampling: disk_data = self._random_disk_domain_points() else: disk_data = self._grid_disk_domain_points() self.columns_dict["domain"] = [column_name] disk_data = disk_data.astype(self.dtype) return disk_data if geom_type.lower() == "bc": if config.bc is None: raise KeyError("Sampling config for BC of {}:{} should not be none".format(self.geom_type, self.name)) logger.info("Sampling BC points for {}:{}, config info: {}" .format(self.geom_type, self.name, config.bc)) if config.bc.with_normal: if config.bc.random_sampling: disk_data, disk_data_normal = self._random_disk_boundary_points(need_normal=True) else: disk_data, disk_data_normal = self._grid_disk_boundary_points(need_normal=True) column_data = self.name + "_BC_points" column_normal = self.name + "_BC_normal" self.columns_dict["BC"] = [column_data, column_normal] disk_data = disk_data.astype(self.dtype) disk_data_normal = disk_data_normal.astype(self.dtype) return disk_data, disk_data_normal if config.bc.random_sampling: disk_data = self._random_disk_boundary_points(need_normal=False) else: disk_data = self._grid_disk_boundary_points(need_normal=False) column_data = self.name + "_BC_points" self.columns_dict["BC"] = [column_data] disk_data = disk_data.astype(self.dtype) return disk_data raise ValueError("Unknown geom_type: {}, only \"domain/BC\" are supported for {}:{}".format( geom_type, self.geom_type, self.name))
[文档]class Rectangle(HyperCube): r""" Definition of Rectangle object. Args: name (str): name of the rectangle. coord_min (Union[tuple[int, int], tuple[float, float], list[int, int], list[float, float], numpy.ndarray]): coordinates of the bottom left corner of rectangle. coord_max (Union[tuple[int, int], tuple[float, float], list[int, int], list[float, float], numpy.ndarray]): coordinates of the top right corner of rectangle. dtype (numpy.dtype): data type of sampled point data type. Default: ``numpy.float32``. sampling_config (SamplingConfig): sampling configuration. Default: ``None``. Supported Platforms: ``Ascend`` Examples: >>> from easydict import EasyDict as edict >>> from mindelec.geometry import create_config_from_edict, Rectangle >>> rectangle_mesh = edict({'domain': edict({'random_sampling': False, 'size': [50, 25]}), ... 'BC': edict({'random_sampling': False, 'size': 300, 'with_normal': True,}),}) >>> rectangle = Rectangle("rectangle", (-3.0, 1), (1, 2), ... sampling_config=create_config_from_edict(rectangle_mesh)) >>> domain = rectangle.sampling(geom_type="domain") >>> bc, bc_normal = rectangle.sampling(geom_type="BC") >>> print(domain.shape) (1250, 2) """ def __init__(self, name, coord_min, coord_max, dtype=np.float32, sampling_config=None): super(Rectangle, self).__init__(name, 2, coord_min, coord_max, dtype=dtype, sampling_config=sampling_config)
class Triangle(Geometry): pass class Polygon(Geometry): pass