mindearth.core.RelativeRMSELoss ================================ .. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg :target: https://gitee.com/mindspore/mindscience/blob/master/docs/api_python/mindearth/core/mindearth.core.RelativeRMSELoss.rst :alt: 查看源文件 .. py:class:: mindearth.core.RelativeRMSELoss(reduction='mean') 相对均方根误差(RRMSE)是由均方根值归一化的均方根误差,其中每个残差都是根据实际值缩放的。 Relative RMSELoss用来测量 :math:`x` 和 :math:`y` 之间的相对均方根误差,其中 :math:`x` 是预测值, :math:`y` 是目标值。 为简单起见,令 :math:`x` 和 :math:`y` 为长度为 :math:`N` 的一维Tensor, :math:`x` 和 :math:`y` 的损失如下: .. math:: loss = \sqrt{\frac{\frac{1}{N}\sum_{i=1}^{N}{(x_i-y_i)^2}}{sum_{i=1}^{N}{(y_i)^2}}} 参数: - **reduction** (str) - `reduction` 决定了计算模式。有三种模式可选: ``"mean"``、 ``"sum"`` 和 ``"none"``。默认值: ``"mean"``。 输入: - **prediction** (Tensor) - 预测值,公式中的 :math:`x` ,shape为 :math:`(N, *)` 的Tensor, :math:`*` 代表任意数量的其他维度。 - **labels** (Tensor) - 样本的真实值,公式中的 :math:`y` 。Tensor的shape :math:`(N, *)` 其中 :math:`*` 表示任意维度,通常情况下和 `prediction` 的shape一致。但是,也支持 `labels` 的shape和 `prediction` 的shape不一致,两者需满足可相互广播。 输出: Tensor,加权损失浮点数。 - **output** (Tensor) - shape为 :math:`()` 的Tensor。