Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindarmour.privacy.evaluation

This module provides some methods to evaluate the risk of privacy leakage of given model.

class mindarmour.privacy.evaluation.ImageInversionAttack(network, input_shape, input_bound, loss_weights=(1, 0.2, 5))[source]

An attack method used to reconstruct images by inverting their deep representations.

References: Aravindh Mahendran, Andrea Vedaldi. Understanding Deep Image Representations by Inverting Them. 2014.

Parameters
  • network (Cell) – The network used to infer images’ deep representations.

  • input_shape (tuple) – Data shape of single network input, which should be in accordance with the given network. The format of shape should be (channel,imagewidth,imageheight).

  • input_bound (Union[tuple, list]) – The pixel range of original images, which should be like [minimum_pixel, maximum_pixel] or (minimum_pixel, maximum_pixel).

  • loss_weights (Union[list, tuple]) – Weights of three sub-loss in InversionLoss, which can be adjusted to obtain better results. Default: (1, 0.2, 5).

Raises
  • TypeError – If the type of network is not Cell.

  • ValueError – If any value of input_shape is not positive int.

  • ValueError – If any value of loss_weights is not positive value.

Examples

>>> import mindspore.ops.operations as P
>>> from mindspore.nn import Cell
>>> from mindarmour.privacy.evaluation.inversion_attack import ImageInversionAttack
>>> class Net(Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self._softmax = P.Softmax()
...         self._reduce = P.ReduceSum()
...         self._squeeze = P.Squeeze(1)
...     def construct(self, inputs):
...         out = self._softmax(inputs)
...         out = self._reduce(out, 2)
...         return self._squeeze(out)
>>> net = Net()
>>> original_images = np.random.random((2,1,10,10)).astype(np.float32)
>>> target_features =  np.random.random((2,10)).astype(np.float32)
>>> inversion_attack = ImageInversionAttack(net,
...                                         input_shape=(1, 10, 10),
...                                         input_bound=(0, 1),
...                                         loss_weights=[1, 0.2, 5])
>>> inversion_images = inversion_attack.generate(target_features, iters=10)
>>> evaluate_result = inversion_attack.evaluate(original_images, inversion_images)
evaluate(original_images, inversion_images, labels=None, new_network=None)[source]

Evaluate the quality of inverted images by three index: the average L2 distance and SSIM value between original images and inversion images, and the average of inverted images’ confidence on true labels of inverted inferred by a new trained network.

Parameters
  • original_images (numpy.ndarray) – Original images, whose shape should be (imgnum,channels,imgwidth,imgheight).

  • inversion_images (numpy.ndarray) – Inversion images, whose shape should be (imgnum,channels,imgwidth,imgheight).

  • labels (numpy.ndarray) – Ground truth labels of original images. Default: None.

  • new_network (Cell) – A network whose structure contains all parts of self._network, but loaded with different checkpoint file. Default: None.

Returns

  • float, l2 distance.

  • float, average ssim value.

  • Union[float, None], average confidence. It would be None if labels or new_network is None.

generate(target_features, iters=100)[source]

Reconstruct images based on target_features.

Parameters
  • target_features (numpy.ndarray) – Deep representations of original images. The first dimension of target_features should be img_num. It should be noted that the shape of target_features should be (1,dim2,dim3,...) if img_num equals 1.

  • iters (int) – iteration times of inversion attack, which should be positive integers. Default: 100.

Returns

numpy.ndarray, reconstructed images, which are expected to be similar to original images.

Raises
  • TypeError – If the type of target_features is not numpy.ndarray.

  • ValueError – If any value of iters is not positive int.Z

class mindarmour.privacy.evaluation.MembershipInference(model, n_jobs=- 1)[source]

Proposed by Shokri, Stronati, Song and Shmatikov, membership inference is a grey-box attack for inferring user’s privacy data. It requires loss or logits results of the training samples. Privacy refers to some sensitive attributes of a single user.

For details, please refer to the Using Membership Inference to Test Model Security.

References: Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. Membership Inference Attacks against Machine Learning Models. 2017..

Parameters
  • model (Model) – Target model.

  • n_jobs (int) – Number of jobs run in parallel. -1 means using all processors, otherwise the value of n_jobs must be a positive integer.

Raises
  • TypeError – If type of model is not mindspore.train.Model.

  • TypeError – If type of n_jobs is not int.

  • ValueError – The value of n_jobs is neither -1 nor a positive integer.

Examples

>>> import mindspore.ops.operations as P
>>> from mindspore.nn import Cell
>>> from mindspore import Model
>>> from mindarmour.privacy.evaluation import MembershipInference
>>> def dataset_generator():
...     batch_size = 16
...     batches = 1
...     data =  np.random.randn(batches * batch_size,1,10).astype(np.float32)
...     label =  np.random.randint(0,10, batches * batch_size).astype(np.int32)
...     for i in range(batches):
...         yield data[i*batch_size:(i+1)*batch_size], label[i*batch_size:(i+1)*batch_size]
>>> class Net(Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self._softmax = P.Softmax()
...         self._Dense = nn.Dense(10,10)
...         self._squeeze = P.Squeeze(1)
...     def construct(self, inputs):
...         out = self._softmax(inputs)
...         out = self._Dense(out)
...         return self._squeeze(out)
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(network=net, loss_fn=loss, optimizer=opt)
>>> inference_model = MembershipInference(model, 2)
>>> config = [{
...     "method": "KNN",
...     "params": {"n_neighbors": [3, 5, 7],}
...     }]
>>> ds_train = ds.GeneratorDataset(dataset_generator, ["image", "label"])
>>> ds_test = ds.GeneratorDataset(dataset_generator, ["image", "label"])
>>> inference_model.train(ds_train, ds_test, config)
>>> metrics = ["precision", "accuracy", "recall"]
>>> eval_train = ds.GeneratorDataset(dataset_generator, ["image", "label"])
>>> eval_test = ds.GeneratorDataset(dataset_generator, ["image", "label"])
>>> result = inference_model.eval(eval_train. eval_test, metrics)
>>> print(result)
eval(dataset_train, dataset_test, metrics)[source]

Evaluate the different privacy of the target model. Evaluation indicators shall be specified by metrics.

Parameters
  • dataset_train (mindspore.dataset) – The training dataset for the target model.

  • dataset_test (mindspore.dataset) – The test dataset for the target model.

  • metrics (Union[list, tuple]) – Evaluation indicators. The value of metrics must be in [“precision”, “accuracy”, “recall”]. Default: [“precision”].

Returns

list, each element contains an evaluation indicator for the attack model.

train(dataset_train, dataset_test, attack_config)[source]

Depending on the configuration, use the input dataset to train the attack model.

Parameters
  • dataset_train (mindspore.dataset) – The training dataset for the target model.

  • dataset_test (mindspore.dataset) – The test set for the target model.

  • attack_config (Union[list, tuple]) – Parameter setting for the attack model. The format is [{“method”: “knn”, “params”: {“n_neighbors”: [3, 5, 7]}}, {“method”: “lr”, “params”: {“C”: np.logspace(-4, 2, 10)}}]. The support methods are knn, lr, mlp and rf, and the params of each method must within the range of changeable parameters. Tips of params implement can be found below: KNN, LR, RF, MLP.

Raises
  • KeyError – If any config in attack_config doesn’t have keys {“method”, “params”}.

  • NameError – If the method(case insensitive) in attack_config is not in [“lr”, “knn”, “rf”, “mlp”].