Release Notes

MindSpore Lite 2.7.1 Release Notes

Major Features and Improvements

  • MindSpore Lite is decoupled from MindSpore, and CPU operator libraries and other related dynamic libraries evolve independently of MindSpore.

  • The cache algorithm in AIGC models supporting image generation is implemented based on graph patterns.

API Change

  • Added MultiModelRunner and ModelExecutor interfaces, supporting graph mode implementation of the Cache algorithm.

    import mindspore_lite as mslite
    import numpy as np
    dtype_map = {
        mslite.DataType.FLOAT32: np.float32,
        mslite.DataType.INT32: np.int32,
        mslite.DataType.FLOAT16: np.float16,
        mslite.DataType.INT8: np.int8
    }
    context = mslite.Context()
    context.target = ["ascend"]
    context.ascend.devcie_id = 0
    runner = mslite.MultiModelRunner()
    model_path = "path_to_model"
    runner.build_from_file(model_path, mslite.ModelType.MINDIR, context)
    execs = runner.get_model_executor()
    for exec_ in execs:
        exec_inputs = exec_.get_inputs()
        for input_ in exec_inputs:
            data = np.random.randn(*input_.shape).astype(dtype_map[input_.dtype])
            input_.set_data_from_numpy(data)
        exec_.predict(exec_inputs)
    
  • The offline conversion tool conver_lite implements subgraph partitioning through the configuration of the SplitGraph parameter and the split_node_name parameter.

    [SplitGraph]
    split_node_name=[[node_name_1],[node_name_2]]
    

Contributors

YeFeng_24,xiong-pan,jjfeing,liuf9,zhangzhugucheng,xu_anyue,yiguangzheng,zxx_xxz,jianghui58,hbhu_bin,chenyihang5,qll1998,yangyingchun1999,liuchengji3,cheng-chao23,gemini524,yangly,yanghui00