mindspore_lite.Converter
- class mindspore_lite.Converter(fmk_type, model_file, output_file, weight_file='', config_file='', weight_fp16=False, input_shape=None, input_format=Format.NHWC, input_data_type=DataType.FLOAT32, output_data_type=DataType.FLOAT32, export_mindir=ModelType.MINDIR_LITE, decrypt_key='', decrypt_mode='AES-GCM', enable_encryption=False, encrypt_key='', infer=False, train_model=False, no_fusion=False, device='')[source]
Constructs a Converter class. The usage scenarios are: 1. Convert the third-party model into MindSpore model or MindSpore Lite model; 2. Convert MindSpore model into MindSpore Lite model.
Note
Please construct the Converter class first, and then generate the model by executing the Converter.converter() method.
The encryption and decryption function is only valid when it is set to MSLITE_ENABLE_MODEL_ENCRYPTION=on at the compile time, and only supports Linux x86 platforms. decrypt_key and encrypt_key are string expressed in hexadecimal. For example, if the key is defined as ‘(b)0123456789ABCDEF’ , the corresponding hexadecimal expression is ‘30313233343637383939414243444546’ . Linux platform users can use the’ xxd ‘tool to convert the key expressed in bytes into hexadecimal expressions. It should be noted that the encryption and decryption algorithm has been updated in version 1.7, resulting in the new python interface does not support the conversion of MindSpore Lite’s encryption exported models in version 1.6 and earlier.
- Parameters
fmk_type (
mindspore_lite.FmkType
) – Input model framework type. Options: FmkType.TF | FmkType.CAFFE | FmkType.ONNX | FmkType.MINDIR | FmkType.TFLITE | FmkType.PYTORCH. For details, see FmkType .model_file (str) – Set the path of the input model when converter. For example, “/home/user/model.prototxt”. Options:TF: “model.pb” | CAFFE: “model.prototxt” | ONNX: “model.onnx” | MINDIR: “model.mindir” | TFLITE: “model.tflite” | PYTORCH: “model.pt or model.pth”.
output_file (str) – Set the path of the output model. The suffix .ms or .mindir can be automatically generated. If set export_mindir to ModelType.MINDIR, then MindSpore’s model will be generated, which uses .mindir as suffix. If set export_mindir to ModelType.MINDIR_LITE, then MindSpore Lite’s model will be generated, which uses .ms as suffix. For example, the input model is “/home/user/model.prototxt”, it will generate the model named model.prototxt.ms in /home/user/.
weight_file (str, optional) – Set the path of input model weight file. Required only when fmk_type is FmkType.CAFFE. The Caffe model is generally divided into two files: ‘model.prototxt’ is model structure, corresponding to model_file parameter; ‘model.Caffemodel’ is model weight value file, corresponding to weight_file parameter. For example, “/home/user/model.caffemodel”. Default: “”.
config_file (str, optional) – Set the path of the configuration file of Converter can be used to post-training, offline split op to parallel, disable op fusion ability and set plugin so path. config_file uses the key = value method to define the related parameters. For the configuration parameters related to post training quantization, please refer to quantization . For the configuration parameters related to extension, please refer to extension . For example, “/home/user/model.cfg”. Default: “”.
weight_fp16 (bool, optional) – If it is True, the const Tensor of the Float32 in the model will be saved as the Float16 data type during Converter, and the generated model size will be compressed. Then, according to DeviceInfo’s enable_fp16 parameter determines the inputs’ data type to perform inference. The priority of weight_fp16 is very low. For example, if quantization is enabled, for the weight of the quantized, weight_fp16 will not take effect again. weight_fp16 only effective for the const Tensor in Float32 data type. Default: False.
input_shape (dict{str, list[int]}, optional) –
Set the dimension of the model input. The order of input dimensions is consistent with the original model. In the following scenarios, users may need to set the parameter. For example, {“inTensor1”: [1, 32, 32, 32], “inTensor2”: [1, 1, 32, 32]}. Default: None, None is equivalent to {}.
Usage 1:The input of the model to be converted is dynamic shape, but prepare to use fixed shape for inference, then set the parameter to fixed shape. After setting, when inferring on the converted model, the default input shape is the same as the parameter setting, no need to resize.
Usage 2: No matter whether the original input of the model to be converted is dynamic shape or not, but prepare to use fixed shape for inference, and the performance of the model is expected to be optimized as much as possible, then set the parameter to fixed shape. After setting, the model structure will be further optimized, but the converted model may lose the characteristics of dynamic shape(some operators strongly related to shape will be merged).
Usage 3: When using the converter function to generate code for Micro inference execution, it is recommended to set the parameter to reduce the probability of errors during deployment. When the model contains a Shape ops or the input of the model to be converted is a dynamic shape, you must set the parameter to fixed shape to support the relevant shape optimization and code generation.
input_format (Format, optional) –
Set the input format of exported model. Only Valid for 4-dimensional input. The following 2 input formats are supported: Format.NCHW | Format.NHWC. Default: Format.NHWC.
Format.NCHW: Store tensor data in the order of batch N, channel C, height H and width W.
Format.NHWC: Store tensor data in the order of batch N, height H, width W and channel C.
input_data_type (DataType, optional) –
Set the data type of the quantization model input Tensor. It is only valid when the quantization parameters ( scale and zero point ) of the model input tensor are available. The following 4 DataTypes are supported: DataType.FLOAT32 | DataType.INT8 | DataType.UINT8 | DataType.UNKNOWN. Default: DataType.FLOAT32.
DataType.FLOAT32: 32-bit floating-point number.
DataType.INT8: 8-bit integer.
DataType.UINT8: unsigned 8-bit integer.
DataType.UNKNOWN: Set the Same DataType as the model input Tensor.
output_data_type (DataType, optional) –
Set the data type of the quantization model output Tensor. It is only valid when the quantization parameters ( scale and zero point ) of the model output tensor are available. The following 4 DataTypes are supported: DataType.FLOAT32 | DataType.INT8 | DataType.UINT8 | DataType.UNKNOWN. Default: DataType.FLOAT32.
DataType.FLOAT32: 32-bit floating-point number.
DataType.INT8: 8-bit integer.
DataType.UINT8: unsigned 8-bit integer.
DataType.UNKNOWN: Set the Same DataType as the model output Tensor.
export_mindir (ModelType, optional) – Set the model type needs to be export. Options: ModelType.MINDIR | ModelType.MINDIR_LITE. Default: ModelType.MINDIR_LITE. For details, see ModelType .
decrypt_key (str, optional) – Set the key used to decrypt the encrypted MindIR file, expressed in hexadecimal characters. Only valid when fmk_type is FmkType.MINDIR. Default: “”.
decrypt_mode (str, optional) – Set decryption mode for the encrypted MindIR file. Only valid when dec_key is set. Options: “AES-GCM” | “AES-CBC”. Default: “AES-GCM”.
enable_encryption (bool, optional) – Whether to encrypt the model when exporting. Export encryption can protect the integrity of the model, but it will increase the initialization time at runtime. Default: False.
encrypt_key (str, optional) – Set the key used to encrypt the model when exporting, expressed in hexadecimal characters. Only support when decrypt_mode is “AES-GCM”, the key length is 16. Default: “”.
infer (bool, optional) – Whether to do pre-inference after Converter. Default: False.
train_model (bool, optional) – Whether the model is going to be trained on device. Default: False.
no_fusion (bool, optional) – Whether avoid fusion optimization, fusion optimization is allowed by default. Default: False.
device (str, optional) – Set target device when converter model. Only valid for ascend. The following device are supported: “Ascend”. Default: “”.
- Raises
TypeError – fmk_type is not a FmkType.
TypeError – model_file is not a str.
TypeError – output_file is not a str.
TypeError – weight_file is not a str.
TypeError – config_file is not a str.
TypeError – weight_fp16 is not a bool.
TypeError – input_shape is neither a dict nor None.
TypeError – input_shape is a dict, but the keys are not str.
TypeError – input_shape is a dict, the keys are str, but the values are not list.
TypeError – input_shape is a dict, the keys are str, the values are list, but the value’s elements are not int.
TypeError – input_format is not a Format.
TypeError – input_data_type is not a DataType.
TypeError – output_data_type is not a DataType.
TypeError – export_mindir is not a ModelType.
TypeError – decrypt_key is not a str.
TypeError – decrypt_mode is not a str.
TypeError – enable_encryption is not a bool.
TypeError – encrypt_key is not a str.
TypeError – infer is not a bool.
TypeError – train_model is not a bool.
TypeError – no_fusion is not a bool.
TypeError – device is not a str.
ValueError – input_format is neither Format.NCHW nor Format.NHWC when it is a Format.
ValueError – decrypt_mode is neither “AES-GCM” nor “AES-CBC” when it is a str.
ValueError – device is not “Ascend” when it is a str.
RuntimeError – model_file does not exist.
RuntimeError – weight_file is not “”, but weight_file does not exist.
RuntimeError – config_file is not “”, but config_file does not exist.
Examples
>>> import mindspore_lite as mslite >>> converter = mslite.Converter(mslite.FmkType.TFLITE, "./mobilenetv2/mobilenet_v2_1.0_224.tflite", ... "mobilenet_v2_1.0_224.tflite") >>> # The ms model may be generated only after converter.converter() is executed after the class is constructed. >>> print(converter) config_file: , config_info: {}, weight_fp16: False, input_shape: {}, input_format: Format.NHWC, input_data_type: DataType.FLOAT32, output_data_type: DataType.FLOAT32, export_mindir: ModelType.MINDIR_LITE, decrypt_key: , decrypt_mode: AES-GCM, enable_encryption: False, encrypt_key: , infer: False, train_model: False, no_fusion: False, device: .
- converter()[source]
Perform conversion, and convert the third-party model to the mindspire model.
- Raises
RuntimeError – converter model failed.
Examples
>>> import mindspore_lite as mslite >>> converter = mslite.Converter(mslite.FmkType.TFLITE, "./mobilenetv2/mobilenet_v2_1.0_224.tflite", ... "mobilenet_v2_1.0_224.tflite") >>> converter.converter() CONVERT RESULT SUCCESS:0 >>> # mobilenet_v2_1.0_224.tflite.ms model will be generated.
- get_config_info()[source]
Get config info of converter.It is used together with set_config_info method for online converter. Please use set_config_info method before get_config_info .
- Returns
dict{str, dict{str, str}}, the config info which has been set in converter.
Examples
>>> import mindspore_lite as mslite >>> converter = mslite.Converter(mslite.FmkType.TFLITE, "./mobilenetv2/mobilenet_v2_1.0_224.tflite", ... "mobilenet_v2_1.0_224.tflite") >>> section = "common_quant_param" >>> config_info_in = {"quant_type":"WEIGHT_QUANT"} >>> converter.set_config_info(section, config_info_in) >>> config_info_out = converter.get_config_info() >>> print(config_info_out) {'common_quant_param': {'quant_type': 'WEIGHT_QUANT'}}
- set_config_info(section='', config_info=None)[source]
Set config info for Converter.It is used together with get_config_info method for online converter.
- Parameters
section (str, optional) –
The category of the configuration parameter. Set the individual parameters of the configfile together with config_info . For example, for section = “common_quant_param”, config_info = {“quant_type”:”WEIGHT_QUANT”}. Default: “”.
For the configuration parameters related to post training quantization, please refer to quantization .
For the configuration parameters related to extension, please refer to extension .
”common_quant_param”: Common quantization parameter.
”mixed_bit_weight_quant_param”: Mixed bit weight quantization parameter.
”full_quant_param”: Full quantization parameter.
”data_preprocess_param”: Data preprocess quantization parameter.
”registry”: Extension configuration parameter.
config_info (dict{str, str}, optional) –
List of configuration parameters. Set the individual parameters of the configfile together with section . For example, for section = “common_quant_param”, config_info = {“quant_type”:”WEIGHT_QUANT”}. Default: None, None is equivalent to {}.
For the configuration parameters related to post training quantization, please refer to quantization .
For the configuration parameters related to extension, please refer to extension .
- Raises
Examples
>>> import mindspore_lite as mslite >>> converter = mslite.Converter(mslite.FmkType.TFLITE, "./mobilenetv2/mobilenet_v2_1.0_224.tflite", ... "mobilenet_v2_1.0_224.tflite") >>> section = "common_quant_param" >>> config_info = {"quant_type":"WEIGHT_QUANT"} >>> converter.set_config_info(section, config_info)