Template Function mindspore::dataset::TFRecord
Defined in File datasets.h
Function Documentation
Function to create a TFRecordDataset.
- Parameters
dataset_files – [in] List of files to be read to search for a pattern of files. The list will be sorted in a lexicographical order.
schema – [in] SchemaObj or string to schema path. (Default = nullptr, which means that the meta data from the TFData file is considered the schema).
columns_list – [in] List of columns to be read (Default = {}, read all columns).
num_samples – [in] The number of samples to be included in the dataset (Default = 0 means all samples). If num_samples is 0 and numRows(parsed from schema) does not exist, read the full dataset; If num_samples is 0 and numRows(parsed from schema) is greater than 0, read numRows rows; If both num_samples and numRows(parsed from schema) are greater than 0, read num_samples rows.
shuffle – [in] The mode for shuffling data every epoch. (Default = ShuffleMode::kGlobal) Can be any of: ShuffleMode::kFalse - No shuffling is performed. ShuffleMode::kFiles - Shuffle files only. ShuffleMode::kGlobal - Shuffle both the files and samples.
num_shards – [in] Number of shards that the dataset should be divided into (Default = 1).
shard_id – [in] The shard ID within num_shards. This argument should be specified only when num_shards is also specified (Default = 0).
shard_equal_rows – [in] Get equal rows for all shards (Default = False, number of rows of each shard may be not equal).
cache – [in] Tensor cache to use (default=nullptr which means no cache is used).
- Returns
Shared pointer to the TFRecordDataset.
Example/* Define dataset path and MindData object */ std::string file_path = "/path/to/tfrecord_file"; std::string schema_path = "/path/to/schema_file"; std::shared_ptr<Dataset> ds = TFRecord({file_path}, schema_path, {"image"}); /* Create iterator to read dataset */ std::shared_ptr<Iterator> iter = ds->CreateIterator(); std::unordered_map<std::string, mindspore::MSTensor> row; iter->GetNextRow(&row); /* Note: The columns of generated dataset depend on the source TFRecord files. */ auto image = row["image"];