# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""STGCN layer"""
import mindspore as ms
import mindspore.nn as nn
from mindspore import ops
from mindspore_gl.nn.conv.chebconv import ChebConv
from mindspore_gl.nn import GNNCell
from mindspore_gl import Graph
class TemporalConv(ms.nn.Cell):
"""temporal convolution layer
from the paper `A deep learning framework for traffic forecasting
arXiv preprint arXiv:1709.04875, 2017. <https://arxiv.org/pdf/1709.04875.pdf>`_ .
Args:
in_channels (int): Input node feature size.
out_channels (int): Output node feature size.
kernel_size (int): Convolutional kernel size.
Inputs:
- **x** (Tensor) - The input node features. The shape is :math:`(B, T, N, (D_{in}))`
where :math:`B` is the size of batch, :math:`T` is the number of input time steps,
:math:`N` is the number of nodes,
:math:`(D_{in})` should be equal to `in_channels` in `Args`.
Outputs:
- Tensor, output node features with shape of :math:`(B, D_{out}, N, T)`,
where :math:`B` is the size of batch, :math:`(D_{out})` should be the same as
`out_channels` in `Args`, :math:`N` is the number of nodes,
:math:`T` is the number of input time steps.
Raises:
TypeError: If `in_channels` or `out_channels` or `kernel_size` is not an int.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl.nn.temporal import TemporalConv
>>> import numpy as np
>>> batch_size = 4
>>> input_time_steps = 6
>>> num_nodes = 2
>>> in_channels = 2
>>> out_channels = 1
>>> temprol_conv = TemporalConv(in_channels, out_channels)
>>> input = ms.Tensor(np.ones((batch_size, input_time_steps, num_nodes, in_channels)), ms.float32)
>>> out = temprol_conv(input)
>>> print(out.shape)
(4, 4, 2, 1)
"""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3):
super(TemporalConv, self).__init__()
assert isinstance(in_channels, int) and in_channels > 0, "in_channels must be positive int"
assert isinstance(out_channels, int) and out_channels > 0, "out_channels must be positive int"
assert isinstance(kernel_size, int) and kernel_size > 0, "kernel_size must be positive int"
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.conv_1 = ms.nn.Conv2d(in_channels, out_channels, (1, kernel_size), pad_mode='valid', has_bias=True)
self.conv_2 = ms.nn.Conv2d(in_channels, out_channels, (1, kernel_size), pad_mode='valid', has_bias=True)
self.conv_3 = ms.nn.Conv2d(in_channels, out_channels, (1, kernel_size), pad_mode='valid', has_bias=True)
self.sigmoid = ms.nn.Sigmoid()
self.relu = ms.nn.ReLU()
def construct(self, x):
"""
Construct function for temporal convolution layer.
"""
x = ops.Transpose()(x, (0, 3, 2, 1))
p = self.conv_1(x)
q = self.sigmoid(self.conv_2(x))
pq = p * q
h = self.relu(pq + self.conv_3(x))
h = ops.Transpose()(h, (0, 3, 2, 1))
return h
[文档]class STConv(GNNCell):
r"""
Spatial-Temporal Graph Convolutional layer.
From the paper `A deep learning framework for traffic forecasting
arXiv preprint arXiv:1709.04875, 2017. <https://arxiv.org/pdf/1709.04875.pdf>`_ .
The STGCN layer contains 2 temporal convolution layer and 1
graph convolution layer (ChebyNet).
Args:
num_nodes (int): number of nodes.
in_channels (int): Input node feature size.
hidden_channels (int): hidden feature size.
out_channels (int): Output node feature size.
kernel_size (int, optional): Convolutional kernel size. Default: 3.
k (int, optional): Chebyshev filter size. Default: 3.
bias (bool, optional): Whether use bias. Default: True.
Inputs:
- **x** (Tensor) - The input node features. The shape is :math:`(B, T, N, (D_{in}))`
where :math:`B` is the size of batch, :math:`T` is the number of input time steps,
:math:`N` is the number of nodes,
:math:`(D_{in})` should be equal to `in_channels` in `Args`.
- **edge_weight** (Tensor) - Edge weights. The shape is :math:`(N\_e,)`
where :math:`N\_e` is the number of edges.
- **g** (Graph) - The input graph.
Outputs:
- Tensor, output node features with shape of :math:`(B, D_{out}, N, T)`,
where :math:`B` is the size of batch, :math:`(D_{out})` should be the same as
`out_channels` in `Args`, :math:`N` is the number of nodes,
:math:`T` is the number of input time steps.
Raises:
TypeError: If `num_nodes` or `in_channels` or `out_channels` or `hidden_channels`
or `kernel_size` or is `k` not an int.
TypeError: If `bias` is not a bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore_gl.nn.temporal import STConv
>>> from mindspore_gl import GraphField
>>> from mindspore_gl.graph import norm
>>> n_nodes = 4
>>> n_edges = 6
>>> feat_size = 2
>>> edge_attr = ms.Tensor([1, 1, 1, 1, 1, 1], ms.float32)
>>> edge_index = ms.Tensor([[1, 1, 2, 2, 3, 3],
>>> [0, 2, 1, 3, 0, 1]], ms.int32)
>>> edge_index, edge_weight = norm(edge_index, n_nodes, edge_attr, 'sym')
>>> edge_weight = ms.ops.Reshape()(edge_weight, ms.ops.Shape()(edge_weight) + (1,))
>>> batch_size = 2
>>> input_time_steps = 5
>>> feat = ms.Tensor(np.ones((batch_size, input_time_steps, n_nodes, feat_size)), ms.float32)
>>> graph_field = GraphField(edge_index[0], edge_index[1], n_nodes, n_edges)
>>> stconv = STConv(num_nodes=n_nodes, in_channels=feat_size,
>>> hidden_channels=3, out_channels=2,
>>> kernel_size=2, k=2)
>>> out = stconv(feat, edge_weight, *graph_field.get_graph())
>>> print(out.shape)
(2, 3, 4, 2)
"""
def __init__(self,
num_nodes: int,
in_channels: int,
hidden_channels: int,
out_channels: int,
kernel_size: int = 3,
k: int = 3,
bias: bool = True):
super().__init__()
assert isinstance(num_nodes, int) and num_nodes > 0, "num_nodes must be positive int"
assert isinstance(in_channels, int) and in_channels > 0, "in_channels must be positive int"
assert isinstance(hidden_channels, int) and hidden_channels > 0, "hidden_channels must be positive int"
assert isinstance(out_channels, int) and out_channels > 0, "out_channels must be positive int"
assert isinstance(kernel_size, int) and kernel_size > 0, "kernel_size must be positive int"
assert isinstance(k, int) and k > 0, "k must be positive int"
assert isinstance(bias, bool), "bias must be bool"
self.num_nodes = num_nodes
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.k = k
self.num_nodes = num_nodes
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.k = k
self.bias = bias
self.temporala_conv1 = TemporalConv(
in_channels=self.in_channels,
out_channels=self.hidden_channels,
kernel_size=self.kernel_size
)
self.cheb_conv = ChebConv(
in_channels=self.hidden_channels,
out_channels=self.hidden_channels,
k=self.k,
bias=self.bias,
)
self.temporala_conv2 = TemporalConv(
in_channels=self.hidden_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size
)
self.batch_norm = nn.BatchNorm2d(num_nodes)
self.relu = nn.ReLU()
def construct(self, x, edge_weight, g: Graph):
"""
Construct function for STConv.
"""
t0 = self.temporala_conv1(x)
t = ops.ZerosLike()(t0)
for b in range(t0.shape[0]):
for s in range(t0.shape[1]):
t[b][s] = self.cheb_conv(t0[b][s], edge_weight, g)
t = self.relu(t0)
t = self.temporala_conv2(t)
t = ops.Transpose()(t, (0, 2, 1, 3))
t = self.batch_norm(t)
t = ops.Transpose()(t, (0, 2, 1, 3))
return t