mindspore_gl.nn.temporal.stconv 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""STGCN layer"""
import mindspore as ms
import mindspore.nn as nn
from mindspore import ops
from mindspore_gl.nn.conv.chebconv import ChebConv
from mindspore_gl.nn import GNNCell
from mindspore_gl import Graph

class TemporalConv(ms.nn.Cell):
    """temporal convolution layer
    from the paper `A deep learning framework for traffic forecasting
    arXiv preprint arXiv:1709.04875, 2017. <https://arxiv.org/pdf/1709.04875.pdf>`_ .

    Args:
        in_channels (int): Input node feature size.
        out_channels (int): Output node feature size.
        kernel_size (int): Convolutional kernel size.

    Inputs:
        - **x** (Tensor) - The input node features. The shape is :math:`(B, T, N, (D_{in}))`
          where :math:`B` is the size of batch, :math:`T` is the number of input time steps,
          :math:`N` is the number of nodes,
          :math:`(D_{in})` should be equal to `in_channels` in `Args`.

    Outputs:
        - Tensor, output node features with shape of :math:`(B, D_{out}, N, T)`,
        where :math:`B` is the size of batch, :math:`(D_{out})` should be the same as
        `out_channels` in `Args`, :math:`N` is the number of nodes,
        :math:`T` is the number of input time steps.

    Raises:
        TypeError: If `in_channels` or `out_channels` or `kernel_size` is not an int.

    Examples:
        >>> import mindspore as ms
        >>> from mindspore_gl.nn.temporal import TemporalConv
        >>> import numpy as np
        >>> batch_size = 4
        >>> input_time_steps = 6
        >>> num_nodes = 2
        >>> in_channels = 2
        >>> out_channels = 1
        >>> temprol_conv = TemporalConv(in_channels, out_channels)
        >>> input = ms.Tensor(np.ones((batch_size, input_time_steps, num_nodes, in_channels)), ms.float32)
        >>> out = temprol_conv(input)
        >>> print(out.shape)
        (4, 4, 2, 1)
    """
    def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3):
        super(TemporalConv, self).__init__()
        assert isinstance(in_channels, int) and in_channels > 0, "in_channels must be positive int"
        assert isinstance(out_channels, int) and out_channels > 0, "out_channels must be positive int"
        assert isinstance(kernel_size, int) and kernel_size > 0, "kernel_size must be positive int"

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size

        self.conv_1 = ms.nn.Conv2d(in_channels, out_channels, (1, kernel_size), pad_mode='valid', has_bias=True)
        self.conv_2 = ms.nn.Conv2d(in_channels, out_channels, (1, kernel_size), pad_mode='valid', has_bias=True)
        self.conv_3 = ms.nn.Conv2d(in_channels, out_channels, (1, kernel_size), pad_mode='valid', has_bias=True)

        self.sigmoid = ms.nn.Sigmoid()
        self.relu = ms.nn.ReLU()

    def construct(self, x):
        """
        Construct function for temporal convolution layer.
        """
        x = ops.Transpose()(x, (0, 3, 2, 1))
        p = self.conv_1(x)
        q = self.sigmoid(self.conv_2(x))
        pq = p * q
        h = self.relu(pq + self.conv_3(x))
        h = ops.Transpose()(h, (0, 3, 2, 1))
        return h

[文档]class STConv(GNNCell): r""" Spatial-Temporal Graph Convolutional layer. From the paper `A deep learning framework for traffic forecasting arXiv preprint arXiv:1709.04875, 2017. <https://arxiv.org/pdf/1709.04875.pdf>`_ . The STGCN layer contains 2 temporal convolution layer and 1 graph convolution layer (ChebyNet). Args: num_nodes (int): number of nodes. in_channels (int): Input node feature size. hidden_channels (int): hidden feature size. out_channels (int): Output node feature size. kernel_size (int, optional): Convolutional kernel size. Default: 3. k (int, optional): Chebyshev filter size. Default: 3. bias (bool, optional): Whether use bias. Default: True. Inputs: - **x** (Tensor) - The input node features. The shape is :math:`(B, T, N, (D_{in}))` where :math:`B` is the size of batch, :math:`T` is the number of input time steps, :math:`N` is the number of nodes, :math:`(D_{in})` should be equal to `in_channels` in `Args`. - **edge_weight** (Tensor) - Edge weights. The shape is :math:`(N\_e,)` where :math:`N\_e` is the number of edges. - **g** (Graph) - The input graph. Outputs: - Tensor, output node features with shape of :math:`(B, D_{out}, N, T)`, where :math:`B` is the size of batch, :math:`(D_{out})` should be the same as `out_channels` in `Args`, :math:`N` is the number of nodes, :math:`T` is the number of input time steps. Raises: TypeError: If `num_nodes` or `in_channels` or `out_channels` or `hidden_channels` or `kernel_size` or is `k` not an int. TypeError: If `bias` is not a bool. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn.temporal import STConv >>> from mindspore_gl import GraphField >>> from mindspore_gl.graph import norm >>> n_nodes = 4 >>> n_edges = 6 >>> feat_size = 2 >>> edge_attr = ms.Tensor([1, 1, 1, 1, 1, 1], ms.float32) >>> edge_index = ms.Tensor([[1, 1, 2, 2, 3, 3], >>> [0, 2, 1, 3, 0, 1]], ms.int32) >>> edge_index, edge_weight = norm(edge_index, n_nodes, edge_attr, 'sym') >>> edge_weight = ms.ops.Reshape()(edge_weight, ms.ops.Shape()(edge_weight) + (1,)) >>> batch_size = 2 >>> input_time_steps = 5 >>> feat = ms.Tensor(np.ones((batch_size, input_time_steps, n_nodes, feat_size)), ms.float32) >>> graph_field = GraphField(edge_index[0], edge_index[1], n_nodes, n_edges) >>> stconv = STConv(num_nodes=n_nodes, in_channels=feat_size, >>> hidden_channels=3, out_channels=2, >>> kernel_size=2, k=2) >>> out = stconv(feat, edge_weight, *graph_field.get_graph()) >>> print(out.shape) (2, 3, 4, 2) """ def __init__(self, num_nodes: int, in_channels: int, hidden_channels: int, out_channels: int, kernel_size: int = 3, k: int = 3, bias: bool = True): super().__init__() assert isinstance(num_nodes, int) and num_nodes > 0, "num_nodes must be positive int" assert isinstance(in_channels, int) and in_channels > 0, "in_channels must be positive int" assert isinstance(hidden_channels, int) and hidden_channels > 0, "hidden_channels must be positive int" assert isinstance(out_channels, int) and out_channels > 0, "out_channels must be positive int" assert isinstance(kernel_size, int) and kernel_size > 0, "kernel_size must be positive int" assert isinstance(k, int) and k > 0, "k must be positive int" assert isinstance(bias, bool), "bias must be bool" self.num_nodes = num_nodes self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.k = k self.num_nodes = num_nodes self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.k = k self.bias = bias self.temporala_conv1 = TemporalConv( in_channels=self.in_channels, out_channels=self.hidden_channels, kernel_size=self.kernel_size ) self.cheb_conv = ChebConv( in_channels=self.hidden_channels, out_channels=self.hidden_channels, k=self.k, bias=self.bias, ) self.temporala_conv2 = TemporalConv( in_channels=self.hidden_channels, out_channels=self.out_channels, kernel_size=self.kernel_size ) self.batch_norm = nn.BatchNorm2d(num_nodes) self.relu = nn.ReLU() def construct(self, x, edge_weight, g: Graph): """ Construct function for STConv. """ t0 = self.temporala_conv1(x) t = ops.ZerosLike()(t0) for b in range(t0.shape[0]): for s in range(t0.shape[1]): t[b][s] = self.cheb_conv(t0[b][s], edge_weight, g) t = self.relu(t0) t = self.temporala_conv2(t) t = ops.Transpose()(t, (0, 2, 1, 3)) t = self.batch_norm(t) t = ops.Transpose()(t, (0, 2, 1, 3)) return t