mindspore_gl.nn.glob.globalattentionpooling 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Global Attention Pooling Layer"""
# pylint: disable=unused-import
import mindspore
from mindspore import nn
from mindspore_gl import BatchedGraph
from .. import GNNCell


[文档]class GlobalAttentionPooling(GNNCell): r""" Apply global attention pooling to the nodes in the graph. From the paper `Gated Graph Sequence Neural Networks <https://arxiv.org/pdf/1511.05493.pdf>`_ . .. math:: r^{(i)} = \sum_{k=1}^{N_i}\mathrm{softmax}\left(f_{gate} \left(x^{(i)}_k\right)\right) f_{feat}\left(x^{(i)}_k\right) Args: gate_nn (Cell): The neural network for computing attention score for each feature. feat_nn (Cell, optional): The neural network applied to each feature before combining each feature with an attention score. Default: None. Inputs: - **x** (Tensor) - The input node features to be updated. The shape is :math:`(N, D)` where :math:`N` is the number of nodes, and :math:`D` is the feature size of nodes. - **g** (BatchedGraph) - The input graph. Outputs: - **x** (Tensor) - The output representation for graphs. The shape is :math:`(2, D_{out})` where :math:`D_{out}` is the feature size of nodes Raises: TypeError: if `gate_nn` type or `feat_nn` type is not mindspore.nn.Cell Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn import GlobalAttentionPooling >>> from mindspore_gl import BatchedGraphField >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx, ... edge_subgraph_idx, graph_mask) >>> node_feat = np.random.random((n_nodes, 4)) >>> node_feat = ms.Tensor(node_feat, ms.float32) >>> gate_nn = ms.nn.Dense(4, 1) >>> net = GlobalAttentionPooling(gate_nn) >>> ret = net(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret.shape) (2, 4) """ def __init__(self, gate_nn, feat_nn=None): super().__init__() if gate_nn: if not isinstance(gate_nn, nn.Cell): raise TypeError("gate_nn type should be mindspore.nn.Cell") if feat_nn: if not isinstance(feat_nn, nn.Cell): raise TypeError("feat_nn type should be mindspore.nn.Cell") self.gate_nn = gate_nn self.feat_nn = feat_nn # pylint: disable=arguments-differ def construct(self, x, g: BatchedGraph): """ Construct function for GlobalAttentionPooling. """ gate = self.gate_nn(x) # assert ms.ops.Shape()(x)[-1] == 1, "The output of gate_nn should have 1 at its last axis." x = self.feat_nn(x) if self.feat_nn else x gate = g.softmax_nodes(gate) x = x * gate readout = g.sum_nodes(x) return readout