mindspore_gl.nn.conv.gatconv 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GATConv Layer"""
import math
import mindspore as ms
from mindspore import nn
from mindspore.common.initializer import initializer
from mindspore.common.initializer import XavierUniform
from mindspore_gl import Graph
from .. import GNNCell


[文档]class GATConv(GNNCell): r""" Graph Attention Network. From the paper `Graph Attention Network <https://arxiv.org/pdf/1710.10903.pdf>`_ . .. math:: h_i^{(l+1)} = \sum_{j\in \mathcal{N}(i)} \alpha_{i,j} W^{(l)} h_j^{(l)} :math:`\alpha_{i, j}` represents the attention score between node :math:`i` and node :math:`j`. .. math:: \alpha_{ij}^{l} = \mathrm{softmax_i} (e_{ij}^{l}) \\ e_{ij}^{l} = \mathrm{LeakyReLU}\left(\vec{a}^T [W h_{i} \| W h_{j}]\right) Args: in_feat_size (int): Input node feature size. out_size (int): Output node feature size. num_attn_head (int): Number of attention head used in GAT. input_drop_out_rate (float, optional): Dropout rate of input drop out. Default: 0.0. attn_drop_out_rate (float, optional): Dropout rate of attention drop out. Default: 0.0. leaky_relu_slope (float, optional): Slope for leaky relu. Default: 0.2. activation (Cell, optional): Activation function. Default: None. add_norm(bool, optional): Whether the edge information needs normalization or not. Default: False. Inputs: - **x** (Tensor) - The input node features. The shape is :math:`(N,D_{in})` where :math:`N` is the number of nodes and :math:`D_{in}` could be of any shape. - **g** (Graph) - The input graph. Outputs: - Tensor, the output feature of shape :math:`(N,D_{out})` where :math:`D_{out}` should be equal to :math:`D_{in} * num\_attn\_head`. Raises: TypeError: If `in_feat_size`, `out_size`, or `num_attn_head` is not an int. TypeError: If `input_drop_out_rate`, `attn_drop_out_rate`, or `leaky_relu_slope` is not a float. TypeError: If `activation` is not a mindspore.nn.Cell. ValueError: If `input_drop_out_rate` or `attn_drop_out_rate` is not in range (0.0, 1.0] Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl.nn import GATConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 7 >>> feat_size = 4 >>> src_idx = ms.Tensor([0, 1, 1, 2, 2, 3, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 0, 2, 1, 3, 0, 1], ms.int32) >>> ones = ms.ops.Ones() >>> feat = ones((n_nodes, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> gatconv = GATConv(in_feat_size=4, out_size=2, num_attn_head=3) >>> res = gatconv(feat, *graph_field.get_graph()) >>> print(res.shape) (4, 6) """ def __init__(self, in_feat_size: int, out_size: int, num_attn_head: int, input_drop_out_rate: float = 0.0, attn_drop_out_rate: float = 0.0, leaky_relu_slope: float = 0.2, activation=None, add_norm=False): super().__init__() assert isinstance(in_feat_size, int) and in_feat_size > 0, "in_feat_size must be positive int" assert isinstance(out_size, int) and out_size > 0, "out_size must be positive int" assert isinstance(num_attn_head, int) and num_attn_head > 0, "num_attn_head must be positive int" assert isinstance(input_drop_out_rate, float), "input_drop_out_rate must be float" assert isinstance(attn_drop_out_rate, float), "attn_drop_out_rate must be float" assert isinstance(leaky_relu_slope, float), "leaky_relu_slope must be float" assert isinstance(add_norm, bool), "add_norm must be bool" self.in_feat_size = in_feat_size self.out_size = out_size self.num_attn_head = num_attn_head if input_drop_out_rate < 0.0 or input_drop_out_rate >= 1.0: raise ValueError(f"For '{self.cls_name}', the 'input_drop_out_rate' should be a number in range (0.0, 1.0]," f"but got {input_drop_out_rate}.") if attn_drop_out_rate < 0.0 or attn_drop_out_rate >= 1.0: raise ValueError(f"For '{self.cls_name}', the 'attn_drop_out_rate' should be a number in range (0.0, 1.0]," f"but got {attn_drop_out_rate}.") if activation: if not isinstance(activation, nn.Cell): raise TypeError("activation type should be ms.nn.Cell") self.reshape = ms.ops.Reshape() gain = math.sqrt(2) # gain for relu self.fc = ms.nn.Dense(in_feat_size, out_size * num_attn_head, weight_init=XavierUniform(gain), has_bias=False) self.attn_s = ms.Parameter(initializer(XavierUniform(gain), [num_attn_head, out_size], ms.float32), name="attn_s") self.attn_d = ms.Parameter(initializer(XavierUniform(gain), [num_attn_head, out_size], ms.float32), name="attn_d") self.bias = ms.Parameter(initializer('zero', [num_attn_head, out_size], ms.float32), name='bias') self.feat_drop = ms.nn.Dropout(p=input_drop_out_rate) self.attn_drop = ms.nn.Dropout(p=attn_drop_out_rate) self.leaky_relu = ms.nn.LeakyReLU(leaky_relu_slope) self.exp = ms.ops.Exp() if add_norm: self.norm_constant = ms.Tensor(100, ms.float32) self.norm_div = ms.ops.Div() else: self.norm_div = None self.activation = activation # pylint: disable=arguments-differ def construct(self, x, g: Graph): """ Construct function for GATConv. """ x = self.feat_drop(x) x = self.fc(x) feat_src = feat_dst = ms.ops.Reshape()(x, (-1, self.num_attn_head, self.out_size)) ed = ms.ops.ReduceSum(True)(feat_dst * self.attn_d, -1) g.set_vertex_attr({'es': ms.ops.ReduceSum(True)(feat_src * self.attn_s, -1), 'ed': ed, 'feat_src': feat_src}) for v in g.dst_vertex: if self.norm_div is not None: edge = [self.leaky_relu(u.es + v.ed) for u in v.innbs] edge = self.exp(self.norm_div(edge, self.norm_constant)) else: edge = [self.exp(self.leaky_relu(u.es + v.ed)) for u in v.innbs] attn = self.attn_drop([c / g.sum(edge) for c in edge]) feat = [u.feat_src for u in v.innbs] v.h = g.sum(attn * feat) v.h = v.h + self.bias if self.activation is not None: v.h = self.activation(v.h) return ms.ops.Flatten()([v.h for v in g.dst_vertex])