mindspore_gl.nn.SortPooling

class mindspore_gl.nn.SortPooling(k)[源代码]

将排序池化应用于图形中的节点。 来自论文 End-to-End Deep Learning Architecture for Graph Classification

排序池化首先将节点特征沿特征维度升序排序。 然后选择Topk节点的排名特征(按每个节点的最大值排序)。

参数:
  • k (int) - 每个图保留的节点数。

输入:
  • x (Tensor) - 要更新的输入节点特征。Shape为 \((N,D)\) 其中 \(N\) 是节点数, \(D\) 是节点的特征大小。

  • g (BatchedGraph) - 输入图。

输出:
  • x (Tensor) - 图形的输出表示。Shape为 \(2,D_{out}\) 其中 \(D_{out}\) 是节点的特征的双倍大小。

异常:
  • TypeError - 如果 k 不是int。

支持平台:

Ascend GPU

样例:

>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore_gl.nn import SortPooling
>>> from mindspore_gl import BatchedGraphField
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx,
...                                         edge_subgraph_idx, graph_mask)
>>> node_feat = np.random.random((n_nodes, 4))
>>> node_feat = ms.Tensor(node_feat, ms.float32)
>>> net = SortPooling(k=2)
>>> ret = net(node_feat, *batched_graph_field.get_batched_graph())
>>> print(ret.shape)
(2, 8)