mindspore_gl.Graph
- class mindspore_gl.Graph[源代码]
图类。
在 GNNCell 类的构造函数中需要被注释的类。 construct 函数中的最后一个参数将被解析成 mindspore_gl.Graph 整图类。
- adj_to_dense()[源代码]
获取图的稠密相邻矩阵。
说明
由于系统限制,目前只支持COO格式进行构建图,并生成Dense格式邻接矩阵。
- 返回:
Tensor,shape为 \((N, N)\) , \(N\) 是图的节点数。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestAdjToDense(GNNCell): ... def construct(self, g: Graph): ... return g.adj_to_dense() ... >>> ret = TestAdjToDense()(*graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3]]
- avg(neigh_feat)[源代码]
聚合邻居的节点特征,通过聚合函数“平均”来生成节点级表示。
- 参数:
neigh_feat (List[SrcVertex feature or Edge feature]) - SrcVertex 或 Edge 表示相邻节点或边特征的属性列表,shape为 \((N, F)\) 。 N 是 SrcVertex 或 Edge 的个数, F 是 SrcVertex 或 Edge 的特征维度。
- 返回:
mindspore.Tensor,shape为 \((N, F)\) ,N 为节点数, F 为节点的特征维度。
- 异常:
TypeError - 如果 neigh_feat 不是 Edge 或 SrcVertex 的列表。
- 支持平台:
GPU
样例:
>>> import math >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestAvg(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.avg([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestAvg()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> NAN = 1e9 >>> for row in ret: ... if math.isnan(row[0]): ... row[0] = NAN >>> print(ret) [[1.0], [1.0], [1000000000.0], [0.0], [1.5], [2.0], [1.0], [1000000000.0], [1.0]]
- dot(feat_x, feat_y)[源代码]
两个节点Tensor的点乘操作。
- 参数:
feat_x ( SrcVertex feature or DstVertex feature) - SrcVertex 或 DstVertex 表示的图节点特征,shape为 \((N, F)\) 。 N 是图上节点数量, F 是节点的特征维度。
feat_y ( SrcVertex feature or DstVertex feature) - SrcVertex 或 DstVertex 表示的图节点特征,shape为 \((N, F)\) 。 N 是图上节点数量, F 是节点的特征维度。
- 返回:
mindspore.Tensor,shape为 \((N, 1)\) , N 为节点数。
- 异常:
TypeError - 如果 feat_x 不在 ‘mul’ 操作的支持类型[Tensor、Number、List、Tuple]中。
TypeError - 如果 feat_y 不在 ‘mul’ 操作的支持类型[Tensor、Number、List、Tuple]中。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestDot(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"src": x, "dst": x}) ... for v in g.dst_vertex: ... v.h = [g.dot(v.src, u.dst) for u in v.innbs] ... return [v.h for v in g.dst_vertex] ... >>> ret = TestDot()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[2.0], [1.0], [2.0], [2.0], [0.0], [0.0], [2.0], [0.0], [1.0], [1.0], [1.0]]
- property dst_idx
一个具有shape为 \((N\_EDGES)\) 的Tensor,表示COO边矩阵的目标节点索引。
- 返回:
mindspore.Tensor,目标顶点列表。
- property dst_vertex
循环遍历获取目标顶点的 innbs 入度节点。
- 返回:
mindspore.Tensor,目标节点列表。
样例:
>>> for v in g.dst_vertex: ... pass
- in_degree()[源代码]
获取图形中每个节点的入度。
- 返回:
Tensor,shape为 \((N, 1)\) ,表示每个节点的入度, \(N\) 是图的节点数。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestInDegree(GNNCell): ... def construct(self, g: Graph): ... return g.in_degree() ... >>> ret = TestInDegree()(*graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1], [2], [0], [1], [2], [1], [1], [0], [3]]
- max(neigh_feat)[源代码]
聚合邻居的节点特征,通过聚合函数“最大值”来生成节点级表示。
- 参数:
neigh_feat (List[SrcVertex feature or Edge feature]) - SrcVertex 或 Edge 表示相邻节点或边特征的属性列表,shape为 \((N, F)\) 。 N 是 SrcVertex 或 Edge 的个数, F 是 SrcVertex 或 Edge 的特征维度。
- 返回:
mindspore.Tensor,shape为 \((N, F)\) ,N 为节点数, F 为节点的特征维度。
- 异常:
TypeError - 如果 neigh_feat 不是 Edge 或 SrcVertex 的列表。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestMax(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.max([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestMax()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [1.0], [0.0], [0.0], [2.0], [2.0], [1.0], [0.0], [1.0]]
- min(neigh_feat)[源代码]
聚合邻居的节点特征,通过聚合函数“最小值”来生成节点级表示。
- 参数:
neigh_feat (List[SrcVertex feature or Edge feature]) - SrcVertex 或 Edge 表示相邻节点或边特征的属性列表,shape为 \((N, F)\) 。 N 是 SrcVertex 或 Edge 的个数, F 是 SrcVertex 或 Edge 的特征维度。
- 返回:
mindspore.Tensor,shape为 \((N, F)\) ,N 为节点数, F 为节点的特征维度。
- 异常:
TypeError - 如果 neigh_feat 不是 Edge 或 SrcVertex 的列表。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestMin(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.min([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestMin()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]
- property n_edges
图的边数。
- 返回:
int,图的边数。
- property n_nodes
图的节点数。
- 返回:
int,图的节点数。
- out_degree()[源代码]
获取图形中每个节点的出度。
- 返回:
Tensor,shape为 \((N, 1)\) ,表示每个节点的出度, \(N\) 是图的节点数。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestOutDegree(GNNCell): ... def construct(self, g: Graph): ... return g.out_degree() ... >>> ret = TestOutDegree()(*graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1], [0], [2], [1], [1], [2], [1], [0], [3]]
- set_dst_attr(feat_dict)[源代码]
在以顶点为中心的环境中设置目标顶点的属性。 参数 feat_dict 的key是属性的名称,value是属性的数据。
- 参数:
feat_dict (Dict) - key的类型为str,value的类型为Tensor,shape为 \((N\_NODES, F)\) ,其中 \(F\) 是特征维度。
- 异常:
TypeError - 如果 feat_dict 不是dict。
- 返回:
mindspore.Tensor,目标顶点的特征。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSetDstAttr(GNNCell): ... def construct(self, x, g: Graph): ... g.set_dst_attr({"h": x}) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSetDstAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
- set_edge_attr(feat_dict)[源代码]
在以顶点为中心的环境中设置边的属性。 参数 feat_dict 的key是属性的名称,value是属性的数据。
- 参数:
feat_dict (Dict) - key的类型为str,value的类型为Tensor,shape为 \((N\_NODES, F)\) ,其中 \(F\) 是特征维度。 当特征维度为1时,推荐的边特征shape为 \((N\_EDGES, 1)\) 。
- 异常:
TypeError - 如果 feat_dict 不是dict。
- 返回:
mindspore.Tensor,边的特征。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> edge_feat = ms.Tensor([[1], [2], [1], [3], [1], [4], [1], [5], [1], [1], [1]], ms.float32) ... >>> class TestSetEdgeAttr(GNNCell): ... def construct(self, nh, eh, g: Graph): ... g.set_vertex_attr({"nh": nh}) ... g.set_edge_attr({"eh": eh}) ... for v in g.dst_vertex: ... v.h = g.sum([u.nh * e.eh for u, e in v.inedges]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSetEdgeAttr()(node_feat, edge_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[2.0], [2.0], [0.0], [0.0], [14.0], [6.0], [1.0], [0.0], [3.0]]
- set_graph_attr(feat_dict)[源代码]
在以顶点为中心的环境中设置整图的属性。 参数 feat_dict 的key是属性的名称,value是属性的数据。
- 参数:
feat_dict (Dict) - key的类型为str,value的为整图的特征。
- 异常:
TypeError - 如果 feat_dict 不是dict。
- 返回:
mindspore.Tensor,图的特征。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> g_attr = ms.Tensor([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]], ms.float32) >>> v_attr = ms.Tensor([1.0, 1.0], ms.float32) ... >>> class TestSetGraphAttr(GNNCell): ... def construct(self, vh, gh, g: Graph): ... g.set_graph_attr({"x": gh}) ... g.set_vertex_attr({"h": vh}) ... for v in g.dst_vertex: ... v.h = g.sum([u.h * g.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSetGraphAttr()(v_attr, g_attr, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[0.0, 1.0], [0.0, 2.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
- set_src_attr(feat_dict)[源代码]
在以顶点为中心的环境中设置源顶点的属性。 参数 feat_dict 的key是属性的名称,value是属性的数据。
- 参数:
feat_dict (Dict) - key的类型为str,value的类型为Tensor,shape为 \((N\_NODES, F)\) ,其中 \(F\) 是特征维度。
- 异常:
TypeError - 如果 feat_dict 不是dict。
- 返回:
mindspore.Tensor,源顶点的特征。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSetSrcAttr(GNNCell): ... def construct(self, x, g: Graph): ... g.set_src_attr({"h": x}) ... return [u.h for u in g.src_vertex] ... >>> ret = TestSetSrcAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
- set_vertex_attr(feat_dict)[源代码]
在以顶点为中心的环境中为顶点设置属性。 参数 feat_dict 的key是属性的名称,value是属性的数据。
- 注意:
set_vertex_attr 的功能等价于 set_src_attr + set_dst_attr
- 参数:
feat_dict (Dict) - key的类型为str,value的类型为Tensor,shape为 \((N\_NODES, F)\) ,其中 \(F\) 是特征维度。
- 异常:
TypeError - 如果 feat_dict 不是dict。
- 返回:
mindspore.Tensor,顶点的特征。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSetVertexAttr(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"h": x}) ... return [v.h for v in g.dst_vertex] * [u.h for u in g.src_vertex] ... >>> ret = TestSetVertexAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [4.0], [1.0], [4.0], [0.0], [1.0], [4.0], [9.0], [1.0]]
- property src_idx
一个具有shape为 \((N\_EDGES)\) 的Tensor,表示COO边矩阵的源节点索引。
- 返回:
mindspore.Tensor,源顶点列表。
- property src_vertex
循环遍历获取目标顶点的 outnbs 出度节点。
- 返回:
mindspore.Tensor,源节点列表。
样例:
>>> for u in g.src_vertex: ... pass
- sum(neigh_feat)[源代码]
聚合邻居的节点特征,通过聚合函数“求和”来生成节点级表示。
- 参数:
neigh_feat (List[SrcVertex feature or Edge feature]) - SrcVertex 或 Edge 表示相邻节点或边特征的属性列表,shape为 \((N, F)\) 。 N 是 SrcVertex 或 Edge 的个数, F 是 SrcVertex 或 Edge 的特征维度。
- 返回:
mindspore.Tensor,shape为 \((N, F)\) ,N 为节点数, F 为节点的特征维度。
- 异常:
TypeError - 如果 neigh_feat 不是 Edge 或 SrcVertex 的列表。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSum(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.sum([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSum()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [0.0], [0.0], [3.0], [2.0], [1.0], [0.0], [3.0]]
- topk_edges(node_feat, k, sortby=None)[源代码]
通过图上top-k个节点特征来表征图的特征。
如果排序方式设置为无,则函数将独立对所有维度执行top-k。
说明
将按选定维度排序的值(如果 sortby 为None,则为所有维度)大于零。
由于通过零值来对特征进行填充,其余特征可能会被零覆盖。
- 参数:
node_feat (Tensor) - 节点特征,shape为 \((N\_NODES, F)\) ,F 是特征维度。
k (int) - top-k的节点个数。
sortby (int) - 根据哪个特征维度排序。如果为无,则所有特征都独立排序。默认值:None。
- 返回:
- topk_output (Tensor) - 特征Tensor的shape为 \((B, K, F)\) ,其中 \(B\) 为输入图的批次大小,
\(K\) 为输入的 ‘k’, \(F\) 为特征维度。
- topk_indices (Tensor) - top-k的输出索引,shape为 \((B, K)\) (当`sortby` 为None时, \((B, K, F)\)),
其中 \(B\) 为输入图的批次大小, \(F\) 为特征维度。
- 异常:
TypeError - 如果 node_feat 不是Tensor。
TypeError - 如果 k 不是int。
ValueError - 如果 sortby 不是int。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestTopkEdges(GNNCell): ... def construct(self, x, g: Graph): ... return g.topk_edges(x, 2, 1) ... >>> output, indices = TestTopkEdges()(node_feat, *graph_field.get_graph()) >>> output = output.asnumpy().tolist() >>> indices = indices.asnumpy().tolist() >>> print(output) [[9.0, 7.0, 5.0, 8.0], [8.0, 7.0, 6.0, 5.0]] >>> print(indices) [3, 4]
- topk_nodes(node_feat, k, sortby=None)[源代码]
通过图上top-k个节点特征来表征图的特征。
如果排序方式设置为无,则函数将独立对所有维度执行top-k。
说明
将按选定维度排序的值(如果 sortby 为None,则为所有维度)大于零。
由于通过零值来对特征进行填充,其余特征可能会被零覆盖。
- 参数:
node_feat (Tensor) - 节点特征,shape为 \((N\_NODES, F)\) ,F 是特征维度。
k (int) - top-k的节点个数。
sortby (int) - 根据哪个特征维度排序。如果为无,则所有特征都独立排序。默认值:None。
- 返回:
- topk_output (Tensor) - 特征Tensor的shape为 \((B, K, F)\) ,其中 \(B\) 为输入图的批次大小,
\(K\) 为输入的 ‘k’, \(F\) 为特征维度。
- topk_indices (Tensor) - top-k的输出索引,shape为 \((B, K)\) (当`sortby` 为None时, \((B, K, F)\)),
其中 \(B\) 为输入图的批次大小, \(F\) 为特征维度。
- 异常:
TypeError - 如果 node_feat 不是Tensor。
TypeError - 如果 k 不是int。
ValueError - 如果 sortby 不是int。
- 支持平台:
GPU
样例:
>>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestTopkNodes(GNNCell): ... def construct(self, x, g: Graph): ... return g.topk_nodes(x, 2, 1) ... >>> output, indices = TestTopkNodes()(node_feat, *graph_field.get_graph()) >>> output = output.asnumpy().tolist() >>> indices = indices.asnumpy().tolist() >>> print(output) [[9.0, 7.0, 5.0, 8.0], [8.0, 7.0, 6.0, 5.0]] >>> print(indices) [3, 4]