mindspore_gl.sampling.randomwalks 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""random walks on graphs"""
import numpy
import mindspore_gl
from mindspore_gl import sample_kernel

__all__ = ['random_walk_unbias_on_homo']


[文档]def random_walk_unbias_on_homo(homo_graph: mindspore_gl.graph.MindHomoGraph, seeds: numpy.ndarray, walk_length: int): r""" random walks sampling on homo graph. Args: homo_graph(mindspore_gl.graph.MindHomoGraph): the source graph which is sampled from. seeds(numpy.ndarray) : random seeds for sampling. walk_length(int): sample path length. Returns: - **array** - sample node :math:`(len(seeds), walk\_length)`. Raises: TypeError: If `walk_length` is not a positive integer. TypeError: If `seeds` is not numpy.ndarray int 32. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import networkx >>> from scipy.sparse import csr_matrix >>> from mindspore_gl.graph import MindHomoGraph, CsrAdj >>> from mindspore_gl.sampling.randomwalks import random_walk_unbias_on_homo >>> node_count = 10000 >>> edge_prob = 0.1 >>> graph = networkx.generators.random_graphs.fast_gnp_random_graph(node_count, edge_prob) >>> edge_array = np.transpose(np.array(list(graph.edges))) >>> row = edge_array[0] >>> col = edge_array[1] >>> data = np.zeros(row.shape) >>> csr_mat = csr_matrix((data, (row, col)), shape=(node_count, node_count)) >>> generated_graph = MindHomoGraph() >>> node_dict = {idx: idx for idx in range(node_count)} >>> edge_count = col.shape[0] >>> edge_ids = np.array(list(range(edge_count))).astype(np.int32) >>> generated_graph.set_topo(CsrAdj(csr_mat.indptr.astype(np.int32), csr_mat.indices.astype(np.int32)), ... node_dict, edge_ids) >>> nodes = np.arange(0, node_count) >>> out = random_walk_unbias_on_homo(homo_graph=generated_graph, seeds=nodes[:5].astype(np.int32), ... walk_length=10) >>> print(out) # results will be random for suffle [[ 0 9493 8272 1251 3922 4180 211 1083 4198 9981 7669] [ 1 1585 1308 4703 1115 4989 9365 1098 1618 5987 8312] [ 2 2352 7214 5956 2184 1573 1352 7005 2325 6211 8667] [ 3 8723 5645 3691 4857 5501 113 4140 6666 2282 1248] [ 4 4354 9551 5224 3156 8693 346 8899 6046 6011 5310]] """ if not isinstance(seeds, numpy.ndarray): raise TypeError("The positive data type is {},\ but it should be numpy ndarray or list.".format(type(seeds))) if not isinstance(walk_length, int) or walk_length <= 0: raise TypeError("The node type is {},\ but it should be positive int.".format(type(walk_length))) # sample out = sample_kernel.random_walk_cpu_unbias(homo_graph.adj_csr.indptr, homo_graph.adj_csr.indices, walk_length, seeds) return out