# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Sampling neighbor"""
from typing import List
import numpy as np
import mindspore_gl
from mindspore_gl.graph import MindHomoGraph
from mindspore_gl import sample_kernel
def map_edge_index(layered_edges, reindex_dict):
for layer_index, layer_edge in enumerate(layered_edges):
layered_edges[layer_index] = sample_kernel.map_edges(layer_edge, reindex_dict)
return layered_edges
[文档]def sage_sampler_on_homo(homo_graph: mindspore_gl.graph.MindHomoGraph, seeds, neighbor_nums: List[int]):
"""
GraphSage sampling on MindHomoGraph.
Args:
homo_graph(mindspore_gl.graph.MindHomoGraph): input graph.
seeds(numpy.ndarray): start nodes for neighbor sampling.
neighbor_nums(List): neighbor nums for each hop.
Returns:
- **layered_edges_{idx}** (numpy.array) - edge array for hop idx.
- **layered_eids_{idx}** (numpy.array) - edge id array for hop idx.
- **all_nodes** - all nodes' global ids.
- **seeds_idx** - seeds local ids.
Raises:
TypeError: If 'homo_graph' is not a MindHomoGraph class.
TypeError: If 'seeds' is not a numpy.ndarray.
TypeError: If 'neighbor_nums' is not a list.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import networkx
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> from mindspore_gl.graph import MindHomoGraph, CsrAdj
>>> from mindspore_gl.sampling.neighbor import sage_sampler_on_homo
>>> node_count = 10
>>> edge_prob = 0.3
>>> graph = networkx.generators.random_graphs.fast_gnp_random_graph(node_count, edge_prob, seed=1)
>>> edge_array = np.transpose(np.array(list(graph.edges)))
>>> row = edge_array[0]
>>> col = edge_array[1]
>>> data = np.zeros(row.shape)
>>> csr_mat = csr_matrix((data, (row, col)), shape=(node_count, node_count))
>>> generated_graph = MindHomoGraph()
>>> node_dict = {idx: idx for idx in range(node_count)}
>>> edge_count = col.shape[0]
>>> edge_ids = np.array(list(range(edge_count))).astype(np.int32)
>>> generated_graph.set_topo(CsrAdj(csr_mat.indptr.astype(np.int32), csr_mat.indices.astype(np.int32)),\
... node_dict, edge_ids)
>>> nodes = np.arange(0, node_count)
>>> res = sage_sampler_on_homo(homo_graph=generated_graph, seeds=nodes[:3].astype(np.int32),\
... neighbor_nums=[2, 2])
>>> print(res)
{'seeds_idx': array([0, 3, 2], dtype=int32), 'all_nodes': array([0, 1, 2, 1, 4, 5, 6, 5, 6, 7, 8, 9],
dtype=int32), 'layered_edges_0': array([[0, 0, 3, 3, 2],
[3, 4, 7, 8, 7]], dtype=int32), 'layered_eids_0': array([[0, 0, 3, 3, 2],
[3, 4, 7, 8, 7]], dtype=int32), 'layered_edges_1': array([[ 3, 3, 4, 4, 7, 8, 8],
[ 7, 8, 10, 11, 9, 10, 11]], dtype=int32), 'layered_eids_1': array([[ 3, 3, 4, 4, 7, 8, 8],
[ 7, 8, 10, 11, 9, 10, 11]], dtype=int32)}
"""
if not isinstance(homo_graph, MindHomoGraph):
raise TypeError("For sage_sampler_on_homo, the 'homo_graph' must a MindHomoGraph, but got "
f"{type(homo_graph).__name__}.")
if not isinstance(seeds, np.ndarray):
raise TypeError("For sage_sampler_on_homo, the 'seeds' must a numpy array, but got "
f"{type(seeds).__name__}.")
if not isinstance(neighbor_nums, list):
raise TypeError("For sage_sampler_on_homo, the 'seeds' must a list, but got "
f"{type(neighbor_nums).__name__}.")
saved_seeds = seeds
all_nodes = [seeds]
layered_edges = []
layered_eids = []
for neighbor_num in neighbor_nums:
edge_index, edge_ids = sample_kernel.sample_one_hop_unbias(homo_graph.adj_csr.indptr,
homo_graph.adj_csr.indices,
neighbor_num, seeds)
layered_edges.append(edge_index)
layered_eids.append(edge_ids)
seeds = np.unique(edge_index[1])
all_nodes.append(seeds)
# get_node_features:
all_nodes = np.concatenate(all_nodes, axis=0)
# reindex sampled result
reindex_dict = {all_nodes[index]: index for index in range(all_nodes.shape[0])}
layered_edges = map_edge_index(layered_edges, reindex_dict)
seeds_idx = np.zeros(saved_seeds.shape, dtype=np.int32)
for idx in range(saved_seeds.shape[0]):
seeds_idx[idx] = reindex_dict[saved_seeds[idx]]
res = {
"seeds_idx": seeds_idx,
"all_nodes": all_nodes,
}
for layer_idx, layer in enumerate(layered_edges):
res[f'layered_edges_{layer_idx}'] = layer
res[f'layered_eids_{layer_idx}'] = layer
return res