mindspore_gl.nn.conv.ginconv 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""GINConv Layer"""
import mindspore as ms
from mindspore._checkparam import Validator
from mindspore_gl import Graph
from .. import GNNCell


[文档]class GINConv(GNNCell): r""" Graph isomorphic network layer. From the paper `How Powerful are Graph Neural Networks? <https://arxiv.org/pdf/1810.00826.pdf>`_ . .. math:: h_i^{(l+1)} = f_\Theta \left((1 + \epsilon) h_i^{l} + \mathrm{aggregate}\left(\left\{h_j^{l}, j\in\mathcal{N}(i) \right\}\right)\right) If weights are provided on each edge, the weighted graph convolution is defined as: .. math:: h_i^{(l+1)} = f_\Theta \left((1 + \epsilon) h_i^{l} + \mathrm{aggregate}\left(\left\{e_{ji} h_j^{l}, j\in\mathcal{N}(i) \right\}\right)\right) Args: activation (mindspore.nn.Cell): Activation function. init_eps (float): Init value of eps. Default: 0. learn_eps (bool): Whether eps is learnable. Default: False. aggregation_type (str): Type of aggregation, should in `'sum'`, `'max'` and `'avg'`. Default: 'sum'. Inputs: - **x** (Tensor): The input node features. The shape is :math:`(N,*)` where :math:`N` is the number of nodes, and :math:`*` could be of any shape. - **edge_weight** (Tensor): The input edge weights. The shape is :math:`(M,*)` where :math:`M` is the number of nodes, and :math:`*` could be of any shape. - **g** (Graph): The input graph. Outputs: - Tensor, output node features. The shape is :math:`(N, out\_feat\_size)`. Raises: TypeError: If `activation` is not a mindspore.nn.Cell. TypeError: If `init_eps` is not a float. TypeError: If `learn_eps` is not a bool. SyntaxError: raised when the `aggregation_type` not in `'sum'`, `'max'` and `'avg'`. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl.nn import GINConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 8 >>> feat_size = 16 >>> src_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 2, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 1, 3, 1, 2, 3, 3, 2], ms.int32) >>> ones = ms.ops.Ones() >>> nodes_feat = ones((n_nodes, feat_size), ms.float32) >>> edges_weight = ones((n_edges, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> conv = GINConv(activation=None, init_eps=0., learn_eps=False, aggregation_type="sum") >>> ret = conv(nodes_feat, edges_weight, *graph_field.get_graph()) >>> print(ret.shape) (4, 16) """ def __init__(self, activation, init_eps=0., learn_eps=False, aggregation_type="sum"): super().__init__() init_eps = Validator.check_is_float(init_eps, "init_eps", self.cls_name) learn_eps = Validator.check_bool(learn_eps, "learn_eps", self.cls_name) if activation is not None and not isinstance(activation, ms.nn.Cell): raise TypeError(f"For '{self.cls_name}', the 'activation' must a mindspore.nn.Cell, but got " f"{type(activation).__name__}.") self.agg_type = aggregation_type if aggregation_type not in {"sum", "max", "avg"}: raise SyntaxError("Aggregation type must be one of sum, max or avg") if learn_eps: self.eps = ms.Parameter(ms.Tensor(init_eps, ms.float32)) else: self.eps = ms.Tensor(init_eps, ms.float32) self.act = activation # pylint: disable=arguments-differ def construct(self, x, edge_weight, g: Graph): """ Construct function for GINConv. """ g.set_vertex_attr({"h": x}) g.set_edge_attr({"w": edge_weight}) for v in g.dst_vertex: if self.agg_type == 'sum': ret = g.sum([s.h * e.w for s, e in v.inedges]) elif self.agg_type == 'max': ret = g.max([s.h * e.w for s, e in v.inedges]) else: ret = g.avg([s.h * e.w for s, e in v.inedges]) v.h = (1 + self.eps) * v.h + ret if self.act is not None: v.h = self.act(v.h) return [v.h for v in g.dst_vertex]