# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Chebconv layer"""
import mindspore as ms
import mindspore.nn as nn
from mindspore._checkparam import Validator
from mindspore_gl import Graph
from mindspore_gl.nn import GNNCell
[文档]class ChebConv(GNNCell):
r"""
Chebyshev Spectral Graph Convolution layer.
From the paper `Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering <https://arxiv.org/abs/1606.09375>`_ paper.
.. math::
\mathbf{X}^{\prime} = {\sigma}(\sum_{k=1}^{K} \mathbf{\beta}^{k} \cdot
\mathbf{T}^{k} (\mathbf{\hat{L}}) \cdot X)
\mathbf{\hat{L}} = 2 \mathbf{L} / {\lambda}_{max} - \mathbf{I}
:math:`\mathbf{T}^{k}` is computed recursively by
.. math::
\mathbf{T}^{k}(\mathbf{\hat{L}}) = 2 \mathbf{\hat{L}}\mathbf{T}^{k-1}
- \mathbf{T}^{k-2}
where :math:`\mathbf{k}` is 1 or 2
.. math::
\mathbf{T}^{0} (\mathbf{\hat{L}}) = \mathbf{I}
\mathbf{T}^{1} (\mathbf{\hat{L}}) = \mathbf{\hat{L}}
Args:
in_channels (int): Input node feature size.
out_channels (int): Output node feature size.
k (int): Chebyshev filter size. Default: 3.
bias (bool): Whether use bias. Default: True.
Inputs:
- **x** (Tensor) - The input node features. The shape is :math:`(N, D_{in})`
where :math:`N` is the number of nodes,
and :math:`D_{in}` should be equal to `in_channels` in `Args`.
- **edge_weight** (Tensor) - Edge weights. The shape is :math:`(N\_e,)`
where :math:`N\_e` is the number of edges.
- **g** (Graph) - The input graph.
Outputs:
- Tensor, output node features with shape of :math:`(N, D_{out})`, where :math:`(D_{out})` should be
the same as `out_size` in `Args`.
Raises:
TypeError: If `in_channels` or `out_channels` or `k` is not an int.
TypeError: If `bias` is not a bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl.nn import ChebConv
>>> from mindspore_gl import GraphField
>>> from mindspore_gl.utils import norm
>>> n_nodes = 2
>>> feat_size = 4
>>> edge_index = [[0, 1], [1, 0]]
>>> edge_index = ms.Tensor(edge_index, ms.int32)
>>> ones = ms.ops.Ones()
>>> feat = ones((n_nodes, feat_size), ms.float32)
>>> edge_index, edge_weight = norm(edge_index, n_nodes)
>>> feat = ones((n_nodes, feat_size), ms.float32)
>>> checonv = ChebConv(in_channels=feat_size, out_channels=4, k=3)
>>> res = checonv(feat, edge_weight, *graph_field.get_graph())
>>> print(res.shape)
(2, 4)
"""
def __init__(self, in_channels: int, out_channels: int, k: int = 3, bias: bool = True):
super(ChebConv, self).__init__()
self.in_channels = Validator.check_positive_int(in_channels, "in_channels", self.cls_name)
self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name)
self.k = Validator.check_positive_int(k, "k", self.cls_name)
bias = Validator.check_bool(bias, "bias", self.cls_name)
self.k = k
self.in_channels = in_channels
self.out_channels = out_channels
self.lins = nn.CellList([nn.Dense(in_channels, out_channels, has_bias=True) for _ in range(k)])
if bias:
self.bias = ms.Parameter(ms.ops.Zeros()(self.out_channels, ms.float32))
else:
self.bias = None
def construct(self, x, edge_weight, g: Graph):
"""
Construct function for cheb layer.
"""
cb_0 = x
cb_1 = x
out = self.lins[0](cb_0)
if self.k > 1:
g.set_vertex_attr({"x": x})
for v in g.dst_vertex:
feat = [u.x for u in v.innbs]
v.x = g.sum(edge_weight * feat)
cb_1 = [v.x for v in g.dst_vertex]
out = out + self.lins[1](cb_1)
for i in range(2, self.k):
g.set_vertex_attr({"x": cb_1})
for v in g.dst_vertex:
feat = [u.x for u in v.innbs]
v.x = g.sum(edge_weight * feat)
cb_2 = [v.x for v in g.dst_vertex]
cb_2 = 2. * cb_2 - cb_0
out = out + self.lins[i](cb_2)
cb_0, cb_1 = cb_1, cb_2
if self.bias is not None:
out += self.bias
return out