# Release Notes ## MindSpore Golden Stick 1.0.0 Release Notes ### 主要特性和增强 * 训练后量化算法 `PTQ` 支持 `GPTQ` 量化算法,可对权重进行8bit或4bit量化。`GPTQ` 已添加至精度恢复算法集中,可通过 `PTQConfig` 中的 `precision_recovery` 来进行算法选择,当前精度恢复算法仅 `GPTQ` 算法可选。 * 训练后量化算法 `PTQ` 支持 `AWQ` 量化算法,通过新增一种异常值抑制方法来使能 `AWQ` ,对权重进行4bit量化。可通过 `PTQConfig` 中的 `outliers_suppression` 来进行异常值抑制方法选择,当前可选 `smooth` 和 `awq` 两种方法。 * 训练后量化算法 `PTQ` 支持激活per-token动态量化,实现对激活的在线量化。可通过 `PTQConfig` 中的 `act_quant_granularity=QuantGranularity.PER_TOKEN`进行配置。 ### API变更 * `RoundToNearest` 和 `SmoothQuant` 量化方法已经被废弃,请使用 `PTQ` 进行代替。 ### 贡献者 感谢以下人员做出的贡献: huangzhuo, zhangminli, ccsszz, yyyyrf, hangangqiang 欢迎以任何形式对项目提供贡献!