文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.reshape

mindspore.ops.reshape(input, shape)[源代码]

基于给定的 shape ,对输入Tensor进行重新排列。

shape 最多只能有一个-1,在这种情况下,它可以从剩余的维度和输入的元素个数中推断出来。

参数:
  • input (Tensor) - Tensor的 shape(x1,x2,...,xR)

  • shape (Union[tuple[int], list[int], Tensor[int]]) - 如果 shape 是list或者tuple,其元素需为整数, 并且只支持常量值。如 (y1,y2,...,yS) 。如果 shape 是张量,则其数据类型为int32或者int64,并且只支持一维张量。 兼容支持list和Tensor类型输入,但是不推荐使用。

返回:

Tensor,若给定的 shape 中不包含-1, 则输出 shape(y1,y2,...,yS) 。若给定的 shape 中第 k 个位置为-1,则输出 shape(y1,...,yk1,i=1Rxiy1×...×yk1×yk+1×...×yS,yk+1,...,yS)

异常:
  • ValueError - 给定的 shape 中包含一个以上的-1。

  • ValueError - 给定的 shape 中包含小于-1的元素。

  • ValueError - 给定的 shape 中不包含-1的场景,各元素的乘积不等于输入Tensor的 shape 的乘积, i=1Rxii=1Syi,(即与输入的数组大小不匹配)。 或者给定的 shape 中包含-1的场景,除-1外元素的乘积无法整除输入Tensor的 shape 的乘积 i=1Rxi

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> output = ops.reshape(input, (3, 2))
>>> print(output)
[[-0.1  0.3]
 [ 3.6  0.4]
 [ 0.5 -3.2]]