mindspore.dataset.Cifar100Dataset ================================= .. py:class:: mindspore.dataset.Cifar100Dataset(dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None) CIFAR-100数据集。 生成的数据集有三列: `[image, coarse_label, fine_label]` 。 `image` 列的数据类型为uint8。 `coarse_label` 和 `fine_labels` 列的数据类型为uint32。 参数: - **dataset_dir** (str) - 包含数据集文件的根目录路径。 - **usage** (str, 可选) - 指定数据集的子集,可取值为 ``'train'``、 ``'test'`` 或 ``'all'`` 。 取值为 ``'train'`` 时将会读取50,000个训练样本,取值为 ``'test'`` 时将会读取10,000个测试样本,取值为 ``'all'`` 时将会读取全部60,000个样本。默认值: ``None`` ,读取全部样本图片。 - **num_samples** (int, 可选) - 指定从数据集中读取的样本数,可以小于数据集总数。默认值: ``None`` ,读取全部样本图片。 - **num_parallel_workers** (int, 可选) - 指定读取数据的工作线程数。默认值: ``None`` ,使用全局默认线程数(8),也可以通过 :func:`mindspore.dataset.config.set_num_parallel_workers` 配置全局线程数。 - **shuffle** (bool, 可选) - 是否混洗数据集。默认值: ``None`` 。下表中会展示不同参数配置的预期行为。 - **sampler** (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值: ``None`` 。下表中会展示不同配置的预期行为。 - **num_shards** (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: ``None`` 。指定此参数后, `num_samples` 表示每个分片的最大样本数。一般在 `数据并行模式训练 <https://www.mindspore.cn/docs/zh-CN/r2.5.0/model_train/parallel/data_parallel.html#数据并行模式加载数据集>`_ 的时候使用。 - **shard_id** (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: ``None`` 。只有当指定了 `num_shards` 时才能指定此参数。 - **cache** (:class:`~.dataset.DatasetCache`, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 `单节点数据缓存 <https://www.mindspore.cn/docs/zh-CN/r2.5.0/model_train/dataset/cache.html>`_ 。默认值: ``None`` ,不使用缓存。 教程样例: - `使用数据Pipeline加载 & 处理数据集 <https://www.mindspore.cn/docs/zh-CN/r2.5.0/api_python/samples/dataset/dataset_gallery.html>`_ 异常: - **RuntimeError** - `dataset_dir` 路径下不包含数据文件。 - **RuntimeError** - 同时指定了 `sampler` 和 `shuffle` 参数。 - **RuntimeError** - 同时指定了 `sampler` 和 `num_shards` 参数或同时指定了 `sampler` 和 `shard_id` 参数。 - **RuntimeError** - 指定了 `num_shards` 参数,但是未指定 `shard_id` 参数。 - **RuntimeError** - 指定了 `shard_id` 参数,但是未指定 `num_shards` 参数。 - **ValueError** - 如果 `shard_id` 取值不在[0, `num_shards` )范围。 - **ValueError** - `num_parallel_workers` 参数超过系统最大线程数。 - **ValueError** - `usage` 参数取值不为 ``'train'``、 ``'test'`` 或 ``'all'`` 。 .. note:: 入参 `num_samples` 、 `shuffle` 、 `num_shards` 、 `shard_id` 可用于控制数据集所使用的采样器,其与入参 `sampler` 搭配使用的效果如下。 .. include:: mindspore.dataset.sampler.txt **关于CIFAR-100数据集:** CIFAR-100数据集和CIFAR-10数据集非常相似,CIFAR-100有100个类别,每类包含600张图片。其中500张训练图片和100张测试图片。这100个类别又被分成20个超类。每个图片都有一个"fine"标签(所属子类)和一个"coarse"标签(所属超类)。 以下为原始CIFAR-100数据集的结构。您可以将数据集文件解压得到如下的文件结构,并通过MindSpore的API进行读取。 .. code-block:: . └── cifar-100-binary ├── train.bin ├── test.bin ├── fine_label_names.txt └── coarse_label_names.txt **引用:** .. code-block:: @techreport{Krizhevsky09, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009}, howpublished = {http://www.cs.toronto.edu/~kriz/cifar.html} } .. include:: mindspore.dataset.api_list_vision.txt