mindspore.communication.comm_func.reduce_scatter_tensor
=======================================================

.. py:function:: mindspore.communication.comm_func.reduce_scatter_tensor(tensor, op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP, async_op=False)

    规约并且分发指定通信组中的张量,返回分发后的张量。

    .. note::
        在集合的所有过程中,Tensor必须具有相同的shape和格式。

    参数:
        - **tensor** (Tensor) - 输入待规约且分发的Tensor,假设其形状为 :math:`(N, *)` ,其中 `*` 为任意数量的额外维度。N必须能够被rank_size整除,rank_size为当前通讯组里面的计算卡数量。
        - **op** (str, 可选) - 规约的具体操作。如 ``"sum"`` 、 ``"prod"`` 、 ``"max"`` 、和 ``"min"`` 。默认值: ``ReduceOp.SUM`` 。
        - **group** (str,可选) - 工作的通信组,默认值: ``GlobalComm.WORLD_COMM_GROUP`` (即Ascend平台为 ``"hccl_world_group"`` ,GPU平台为 ``"nccl_world_group"`` )。
        - **async_op** (bool, 可选) - 本算子是否是异步算子。默认值: ``False`` 。

    返回:
        Tuple(Tensor, CommHandle),输出Tensor数据类型与 `input_x` 一致,shape为 :math:`(N/rank\_size, *)` 。
        若 `async_op` 是True,CommHandle是一个异步工作句柄。若 `async_op` 是False,CommHandle将返回None。

    异常:
        - **TypeError** - 首个输入的数据类型不为Tensor,`op` 和 `group` 不是字符串。
        - **ValueError** - 如果输入的第一个维度不能被rank size整除。
        - **RuntimeError** - 如果目标设备无效,或者后端无效,或者分布式初始化失败。

    样例:

    .. note::
        .. include:: ../ops/mindspore.ops.comm_note.txt

        该样例需要在2卡环境下运行。