文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.cond

mindspore.ops.cond(A, p=None)[源代码]

返回给定Tensor的矩阵范数或向量范数。

p 为norm的计算模式。支持下列norm模式。

p

矩阵范数

向量范数

None (默认值)

2-norm (参考最下方公式)

2-norm (参考最下方公式)

'fro'

Frobenius norm

不支持

'nuc'

nuclear norm

不支持

inf

max(sum(abs(x),dim=1))

max(abs(x))

-inf

min(sum(abs(x),dim=1))

min(abs(x))

0

不支持

sum(x!=0)

1

max(sum(abs(x),dim=0))

参考最下方公式

-1

min(sum(abs(x),dim=0))

参考最下方公式

2

最大奇异值

参考最下方公式

-2

最小奇异值

参考最下方公式

其余int或float值

不支持

sum(abs(x)p)(1/p)

说明

当前暂不支持复数。

参数:
  • A (Tensor) - shape为 (,n) 或者 (,m,n) 的Tensor,其中 是零个或多个batch维度。

  • p (Union[int, float, inf, -inf, 'fro', 'nuc'], 可选) - norm的模式。行为参考上表。默认值: None

返回:

Tensor,进行条件数计算的结果,与输入 A 的数据类型相同。

异常:
  • TypeError - A 是一个向量并且 p 是str类型。

  • ValueError - A 是一个矩阵并且 p 不是有效的取值。

  • ValueError - A 是一个矩阵并且 p 为一个取值不为[1, -1, 2, -2]之一的整型。

支持平台:

GPU CPU

样例:

>>> import mindspore as ms
>>> x = ms.Tensor([[1.0, 0.0, -1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 1.0]])
>>> print(ms.ops.cond(x))
1.4142
>>> print(ms.ops.cond(x, 'fro'))
3.1622777