mindspore.nn.MaxPool3d
- class mindspore.nn.MaxPool3d(kernel_size=1, stride=1, pad_mode='valid', padding=0, dilation=1, return_indices=False, ceil_mode=False)[源代码]
在一个输入Tensor上应用3D最大池化运算,输入Tensor可看成是由一系列3D平面组成的。
通常,输入的shape为 \((N_{in}, C_{in}, D_{in}, H_{in}, W_{in})\) ,MaxPool3d输出 \((D_{in}, H_{in}, W_{in})\) 维度区域最大值。给定 kernel_size 为 \(ks = (d_{ker}, h_{ker}, w_{ker})\) 和 stride 为 \(s = (s_0, s_1, s_2)\),公式如下。
\[\text{output}(N_i, C_j, d, h, w) = \max_{l=0, \ldots, d_{ker}-1} \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1} \text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n)\]说明
Atlas 训练系列产品暂不支持此接口。
- 参数:
kernel_size (Union[int, tuple[int]]) - 指定池化核尺寸大小,如果为整数或单元素tuple,则代表池化核的深度,高和宽。如果为tuple且长度不为1,其值必须包含三个正整数值分别表示池化核的深度,高和宽。取值必须为正整数。默认值:
1
。stride (Union[int, tuple[int]]) - 池化操作的移动步长,如果为整数或单元素tuple,则代表池化核的深度,高和宽方向的移动步长。如果为tuple且长度不为1,其值必须包含三个正整数值分别表示池化核的深度,高和宽的移动步长。取值必须为正整数。如果值为
None
,则使用默认值 kernel_size。默认值:1
。pad_mode (str,可选) - 指定填充模式,填充值为0。可选值为
"same"
,"valid"
或"pad"
。默认值:"valid"
。"same"
:在输入的深度、高度和宽度维度进行填充,使得当 stride 为1
时,输入和输出的shape一致。待填充的量由算子内部计算,若为偶数,则均匀地填充在四周,若为奇数,多余的填充量将补充在前方/底部/右侧。如果设置了此模式, padding 必须为0。"valid"
:不对输入进行填充,返回输出可能的最大深度、高度和宽度,不能构成一个完整stride的额外的像素将被丢弃。如果设置了此模式, padding 必须为0。"pad"
:对输入填充指定的量。在这种模式下,在输入的深度、高度和宽度方向上填充的量由 padding 参数指定。如果设置此模式, padding 必须大于或等于0。
padding (Union(int, tuple[int], list[int])) - 池化填充值。默认值:
0
。 padding 只能是一个整数或者包含一个或三个整数的tuple/list,若 padding 为一个整数或包含一个整数的tuple/list,则会分别在输入的前后上下左右六个方向进行 padding 次的填充,若 padding 为一个包含三个整数的tuple/list,则会在输入的前后进行 padding[0] 次的填充,上下进行 padding[1] 次的填充,在输入的左右进行 padding[2] 次的填充。dilation (Union(int, tuple[int])) - 卷积核中各个元素之间的间隔大小,用于提升池化操作的感受野。如果为tuple,其值必须包含一个或三个整数。默认值:
1
。return_indices (bool) - 若为True,则返回一个包含两个Tensor的Tuple,表示池化的计算结果以及生成max值的位置,否则,仅返回池化计算结果。默认值:
False
。ceil_mode (bool) - 若为
True
,使用ceil模式来计算输出shape。若为False
,使用floor模式来计算输出shape。默认值:False
。
- 输入:
x (Tensor) - shape为 \((N_{in}, C_{in}, D_{in}, H_{in}, W_{in})\) 或者 \((C_{in}, D_{in}, H_{in}, W_{in})\) 的Tensor。
- 输出:
如果 return_indices 为
False
,则是shape为 \((N_{out}, C_{out}, D_{out}, H_{out}, W_{out})\) 或者 \((C_{out}, D_{out}, H_{out}, W_{out})\) 的Tensor。数据类型与 x 一致。 如果 return_indices 为True
,则是一个包含了两个Tensor的Tuple,表示maxpool的计算结果以及生成max值的位置。output (Tensor) - 最大池化结果,shape为 \((N_{out}, C_{out}, D_{out}, H_{out}, W_{out})\) 或者 \((C_{out}, D_{out}, H_{out}, W_{out})\) 的Tensor。数据类型与 x 一致。
argmax (Tensor) - 最大值对应的索引。数据类型为int64。
其中,如果 pad_mode 为
"pad"
模式时,输出的shape计算公式如下:\[D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor\]\[H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor\]\[W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times (\text{kernel_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor\]- 异常:
ValueError - x 的shape长度不等于 4 或 5。
TypeError - kernel_size 、 stride 、 padding 、 dilation 既不是整数也不是元组。
ValueError - kernel_size 或者 stride 小于1。
ValueError - padding 不为int也不为长度为3的tuple。
ValueError - pad_mode 不为
"pad"
模式时,return_indices 设为了True或者 dilation 不为1。ValueError - pad_mode 不为
"pad"
的时候 padding 为非0。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import mindspore as ms >>> import mindspore.nn as nn >>> from mindspore import Tensor >>> import numpy as np >>> np_x = np.random.randint(0, 10, [5, 3, 4, 6, 7]) >>> x = Tensor(np_x, ms.float32) >>> pool1 = nn.MaxPool3d(kernel_size=2, stride=1, pad_mode="pad", padding=1, dilation=3, return_indices=True) >>> output = pool1(x) >>> print(output[0].shape) (5, 3, 3, 5, 6) >>> print(output[1].shape) (5, 3, 3, 5, 6) >>> pool2 = nn.MaxPool3d(kernel_size=2, stride=1, pad_mode="pad", padding=1, dilation=3, return_indices=False) >>> output2 = pool2(x) >>> print(output2.shape) (5, 3, 3, 5, 6)