mindspore.parallel.shard 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""shard"""

import copy
import mindspore as ms
from mindspore import log as logger
from mindspore._c_expression import Shard_


[文档]class Layout: """ Parallel layout describes the detailed sharding information. Note: - It is valid only in semi auto parallel or auto parallel mode. - The multiplication result of the `device_matrix` must be equal to the device count in a pipeline stage. - When the layout function is invoked to constructs a sharding strategy, each alias name is only allowed to be used once to shard a tensor. Args: device_matrix (tuple): Describe the shape of devices arrangement, its element type is int. alias_name (tuple): The alias name for each axis of device_matrix, its length shoits element type is string. When using "interleaved_parallel" as an alias name, the tensor would be split into multiple copies on the corresponding partition dimension on a single card. Raises: TypeError: `device_matrix` is not a tuple type. TypeError: `alias_name` is not a tuple type. ValueError: `device_matrix` length is not equal to `alias_name` length. TypeError: The element of `device_matrix` is not int type. TypeError: The element of `alias_name` is not a str type. ValueError: The element of `alias_name` is an empty str. ValueError: The element of `alias_name` is "None". ValueError: `alias_name` contains repeated element. Examples: >>> from mindspore import Layout >>> layout = Layout((2, 2, 2), ("dp", "sp", "mp")) >>> layout0 = layout("dp", "mp") >>> print(layout0.to_dict()) {"device_matrix": (2, 2, 2), "tensor_map": (2, 0), "interleaved_parallel": False} >>> # Total device num is 4, but split the tensor in local device into two copies. >>> layout = Layout((2, 2, 2), ("dp", "sp", "interleaved_parallel")) >>> layout1 = layout(("dp", "interleaved_parallel"), "sp") """ def __init__(self, device_matrix, alias_name): if not isinstance(device_matrix, tuple): raise TypeError(f'device_matrix must be tuple type, but got:{type(device_matrix)}') if not isinstance(alias_name, tuple): raise TypeError(f'alias_name must be tuple type, but got:{type(alias_name)}') if len(device_matrix) != len(alias_name): raise ValueError(f'device_matrix length should be equal to alias_name length') for in_ele in device_matrix: if not isinstance(in_ele, int): raise TypeError(f'The element of device_matrix must be int type, but got:{type(in_ele)}') for in_ele in alias_name: if not isinstance(in_ele, str): raise TypeError(f'The element of alias_name must be str type, but got:{type(in_ele)}') if not in_ele: raise ValueError(f"The element of alias_name can not be empty.") if in_ele == "None": raise ValueError(f"The element of alias_name can not set 'None', because 'None' means no sharding.") if len(set(alias_name)) != len(alias_name): raise ValueError(f'Each element of alias_name {alias_name} should be different') inter_key = "interleaved_parallel" if inter_key in alias_name and alias_name.index(inter_key) != len(alias_name) - 1: raise ValueError(f"When alias_name {alias_name} contains keyword 'interleaved_parallel'," f" it should be at the last dim of alias_name, which means the virtual sharding.") self._device_shape = device_matrix self._alias_name = alias_name self._tensor_map = None def __call__(self, *tensor_map): self._tensor_map = () writed_map = () for ele in tensor_map: if isinstance(ele, tuple): ele_map = () for item in ele: if item == "None": ele_map += (-1,) continue if item not in self._alias_name: raise ValueError(f'The axis {item} is not found in {self._alias_name}') if item in writed_map: raise ValueError(f'The axis {item} has been set more than one in {self._alias_name}') ele_map += (len(self._alias_name) - 1 - self._alias_name.index(item),) writed_map += (item,) self._tensor_map += (ele_map,) continue if ele == "None": self._tensor_map += (-1,) continue if ele not in self._alias_name: raise ValueError(f'The axis {ele} is not found in {self._alias_name}') if ele in writed_map: raise ValueError(f'The axis {ele} has been set more than one in {self._alias_name}') self._tensor_map += (len(self._alias_name) - 1 - self._alias_name.index(ele),) writed_map += (ele,) return copy.deepcopy(self)
[文档] def to_dict(self): """ Transform layout to a dictionary. """ if self._device_shape is None: raise ValueError("The device_shape of layout is None") if self._tensor_map is None: raise ValueError("The tensor_map of layout is None") interleaved_parallel = "interleaved_parallel" in self._alias_name return {"device_matrix": self._device_shape, "tensor_map": self._tensor_map, "interleaved_parallel": interleaved_parallel, "alias_name": self._alias_name}
class Shard(Shard_): """Shard operation""" def __init__(self): """Initialize Shard.""" super().__init__('Shard') self.shard_fn = None self.fn = None self.in_strategy = None self.out_strategy = None self.parameter_plan = None self.device = None self.level = None def __call__(self, fn, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0): parallel_mode = ms.context.get_auto_parallel_context("parallel_mode") if parallel_mode not in ("auto_parallel", "semi_auto_parallel"): raise AssertionError( f"Cell shard only supports auto parallel and semi auto parallel.") if ms.context.get_context("device_target") not in ("Ascend", "GPU"): raise AssertionError( f"'Shard' now only supports 'Ascend' and 'GPU'") if parallel_mode == "auto_parallel" and \ ms.context.get_auto_parallel_context("search_mode") != "sharding_propagation": raise AssertionError(f"'search_mode' must be 'sharding_propagation' for 'Shard' when the " f"'parallel_mode' is 'auto_parallel.'") if not isinstance(in_strategy, tuple): raise TypeError( f"For 'Shard', the 'in_strategy' should be a tuple, but got {type(in_strategy).__name__}.") inner_type = self._check_layout_inner_type(in_strategy, "in_strategy") if inner_type == "layout": in_strategy = self._extract_layout_value(in_strategy, "in_strategy") if not isinstance(out_strategy, (type(None), tuple)): raise TypeError(f"For 'Shard', the 'out_strategy' should be None or tuple, " f"but got {type(out_strategy).__name__}.") if not isinstance(out_strategy, type(None)): logger.warning("Out_strategy is not in use currently, will be ignored in the following procedures.") inner_type = self._check_layout_inner_type(out_strategy, "out_strategy") if inner_type == "layout": out_strategy = self._extract_layout_value(out_strategy, "out_strategy") if not isinstance(device, str): raise TypeError(f"For 'Shard', the 'device' should be a string, " f"but got {type(device).__name__}") if not isinstance(level, int): raise TypeError(f"For 'Shard', the 'level' should be an integer, " f"but got {type(level).__name__}") if ms.get_algo_parameters("fully_use_devices") is True: logger.warning("After calling 'shard', the environment variable 'fully_use_devices' " "will be overwritten as False.") ms.set_algo_parameters(fully_use_devices=False) if ms.context.get_auto_parallel_context("full_batch_is_set") is False: logger.warning("When calling the shard interface, " "'dataset_strategy' or 'full_batch' is not manually set by the user, " "and the 'dataset_strategy' will be set to 'full_batch'.") ms.context.set_auto_parallel_context(dataset_strategy="full_batch") if self._is_attrs_has_been_set(fn, in_strategy, out_strategy, device, level): return self.shard_fn shard_ = Shard() if isinstance(fn, ms.nn.Cell): for param in fn.trainable_params(): param.is_in_shard = True # Set parameter layout to corresponding parameter self._set_param_layout_into_parameter(fn, parameter_plan) def shard_fn(*args): @ms.common.jit(hash_args=fn) def after_shard(*args): return shard_(fn, in_strategy, out_strategy, device, level)(*args) return after_shard(*args) self.shard_fn = shard_fn self.fn = fn self.in_strategy = in_strategy self.out_strategy = out_strategy self.device = device self.level = level return self.shard_fn @staticmethod def _search_parameter_by_name(param_name: str, net): param_name = param_name.replace("self.", "") for param in net.trainable_params(): if param.name == param_name: return param return None @staticmethod def _check_layout_is_valid(param_name, param_shape, param_strategy): if len(param_strategy) != len(param_shape): raise ValueError(f"For {param_name}, the length of param_strategy: {len(param_strategy)}, " f"is not equal to param_shape len: {len(param_shape)}.") for i, _ in enumerate(param_strategy): if param_shape[i] % param_strategy[i] != 0: raise ValueError(f"For '{param_name}', the param_shape is {param_shape} and " f"the setting param_strategy is {param_strategy}. " f"The param_shape[{i}]: {param_shape[i]} cannot be divisible by " f"param_strategy[{i}]: {param_strategy[i]}.") def _set_param_layout_into_parameter(self, fn, parameter_plan): """ Set param_strategy into parameter if fn is a Cell and parameter_plan is a dict.""" if parameter_plan is None: return if isinstance(parameter_plan, dict): if not isinstance(fn, ms.nn.Cell): raise TypeError( f"If parameter_plan is set, type of fn must be mindspore.nn.Cell, but got {type(fn)}") for k in parameter_plan.keys(): v = parameter_plan[k] if not isinstance(k, str) or not isinstance(v, (tuple, Layout)): raise TypeError(f"For 'Shard', the type of each key and value in 'parameter_plan' must be str and " f"tuple/Layout, but got {type(k).__name__} and {type(v).__name__}") else: raise TypeError(f"For 'Shard', the 'parameter_plan' should be a dict or None, " f"but got {type(parameter_plan).__name__}") for param_name in parameter_plan.keys(): param_strategy = parameter_plan[param_name] param = self._search_parameter_by_name(param_name, fn) if param is None: logger.warning( f"{param_name} is not exist, ignored its setting.") continue has_set = None if param.param_info.param_strategy: has_set = "strategy" if param.param_info.device_matrix: has_set = "layout" if has_set == "strategy": logger.warning(f"The layout of parameter '{param_name}' has been set to " f"{param.param_info.param_strategy}, current setting will be ignored.") elif has_set == "layout": logger.warning(f"The layout of parameter '{param_name}' has been set, " f"current setting will be ignored.") else: if isinstance(param_strategy, tuple): self._check_layout_is_valid(param_name, param.shape, param_strategy) param.param_info.param_strategy = param_strategy if isinstance(param_strategy, Layout): param_layout = self._extract_layout_value((param_strategy,), "in_strategy")[0] param.param_info.device_matrix = param_layout["device_matrix"] param.param_info.tensor_map = param_layout["tensor_map"] param.param_info.interleaved_parallel = param_layout["interleaved_parallel"] param.param_info.alias_name = param_layout["alias_name"] def _is_attrs_has_been_set(self, fn, in_strategy, out_strategy, device, level): return self.shard_fn is not None and self.fn == fn and self.in_strategy == in_strategy and \ self.out_strategy == out_strategy and self.device == device and self.level == level def _check_layout_inner_type(self, strategy, log_info): """Check inner item type of layout, should be int or ms.Layout.""" strategy_set = set() for stra in strategy: if not isinstance(stra, (tuple, Layout)): raise TypeError( f"The '{log_info}' should be a tuple(tuple(int)) or tuple(mindspore.Layout), " f"but got {type(stra).__name__}") if isinstance(stra, Layout): strategy_set.add("layout") elif isinstance(stra, tuple): strategy_set.add("tuple") self._check_tuple_strategy(stra) if len(strategy_set) != 1: raise TypeError( f"For 'Shard', the strategy can only pass in consistent type for all dimensions.") return strategy_set.pop() def _extract_layout_value(self, layout, log_info): """Extract parallel layout value""" layout_value = None if layout is not None: if not isinstance(layout, tuple): raise TypeError(f'{log_info} must be tuple type, but got:{type(layout)}') layout_value = () for in_ele in layout: if not isinstance(in_ele, Layout): raise TypeError(f"The {log_info} item should be a object of class Layout.") layout_value += (in_ele.to_dict(),) return layout_value def _check_tuple_strategy(self, dim_strategy): if not all(isinstance(x, int) for x in dim_strategy): raise TypeError( f"The tuple strategy for each dimension should be tuple(int).")
[文档]def shard(fn, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0): """ Defining the input and output layouts of this cell and the parallel strategies of remaining ops will be generated by sharding propagation. In PyNative mode, use this method to specify a Cell for distributed execution in graph mode. In Graph mode, use this method to specify distribution strategy for a Cell, strategy for others will be set by sharding propagation. in_strategy and out_strategy define the input and output layout respectively. in_strategy/out_strategy should be a tuple, each element of which corresponds to the desired layout of this input/output, and None represents data_parallel, which can refer to the description of :func:`mindspore.ops.Primitive.shard`. The parallel strategies of remaining operators are derived from the strategy specified by the input and output. Note: If ms.shard is called, the parallel mode in `set_auto_parallel_context` (parallel_mode) will be set to "auto_parallel" and the search mode (search_mode) to "sharding_propagation". If the input contain Parameter, its strategy should be set in `in_strategy`. Args: fn (Union[Cell, Function]): Function to be executed in parallel. Its arguments and return value must be Tensor or Parameter. If `fn` is a Cell with parameters, `fn` needs to be an instantiated object, otherwise its arguments cannot be accessed. in_strategy (tuple): Define the layout of inputs, each element of the tuple should be a tuple(int) or tuple(mindspore.Layout). Tuple defines the layout of the corresponding input. out_strategy (Union[tuple, None]): Define the layout of outputs similar with `in_strategy`. It is not in use right now. Default: ``None`` . parameter_plan (Union[dict, None]): Define the layout for the specified parameters. Each element in dict defines the layout of the parameter like "param_name: layout". The key is a parameter name of type 'str'. The value is a 1-D integer tuple or a 1-D mindspore.Layout tuple, indicating the corresponding layout. If the parameter name is incorrect or the corresponding parameter has been set, the parameter setting will be ignored. Default: ``None`` . device (string): Select a certain `device` target. It is not in use right now. Support ["CPU", "GPU", "Ascend"]. Default: ``"Ascend"`` . level (int): Option for parallel strategy infer algorithm, namely the object function, maximize computation over communication ratio, maximize speed performance, minimize memory usage etc. It is not in use right now. Support [0, 1, 2]. Default: ``0`` . Returns: Function, return the function that will be executed under auto parallel process. Raises: AssertionError: If parallel mode is not "auto_parallel" nor "semi_auto_parallel". AssertionError: If device_target it not "Ascend" or "GPU". TypeError: If `in_strategy` is not a tuple. TypeError: If `out_strategy` is not a tuple or None. TypeError: If any element in `in_strategy` is not a tuple(int) or tuple(mindspore.Layout). TypeError: If any element in `out_strategy` is not a tuple(int) or tuple(mindspore.Layout). TypeError: If `parameter_plan` is not a dict or None. TypeError: If any key in `parameter_plan` is not a str. TypeError: If any value in `parameter_plan` is not a tuple(int) or a tuple(mindspore.Layout). TypeError: If `device` is not a str. TypeError: If `level` is not an integer. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor, nn >>> from mindspore.communication import init >>> ms.set_context(mode=ms.GRAPH_MODE) >>> init() >>> ms.set_auto_parallel_context(parallel_mode="auto_parallel", search_mode="sharding_propagation", ... device_num=8) >>> >>> # Case 1: cell uses functional >>> class BasicBlock(nn.Cell): >>> def __init__(self): >>> super(BasicBlock, self).__init__() >>> self.dense1 = nn.Dense(64, 64) >>> self.gelu = nn.GELU() >>> def my_add(x, y): >>> x = ops.abs(x) >>> return x + y >>> # shard a function with tuple(int) strategies >>> self.shard_my_add = ms.shard(my_add, in_strategy=((2, 2), (1, 4)), out_strategy=((4, 1),)) >>> >>> def construct(self, x, u): >>> x = self.gelu(x) >>> y = self.gelu(u) >>> y = x * y >>> x = self.dense1(x) >>> x = self.shard_my_add(x, y) >>> return x >>> >>> class NetForward(nn.Cell): >>> def __init__(self): >>> super(NetForward, self).__init__() >>> self.block1 = BasicBlock() >>> self.block2 = BasicBlock() >>> self.matmul = ops.MatMul() >>> >>> def construct(self, x, y): >>> x = self.matmul(x, y) >>> x = self.block1(x, x) >>> x = self.block2(x, x) >>> return x >>> >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> # setting cell sharding strategy and parameter_plan by tuple(int) >>> self.layer_net1 = NetForward() >>> self.layer_net1_shard = ms.shard(self.layer_net1, in_strategy=((4, 2), (2, 1)), ... parameter_plan={"self.layer_net1.block1.weight": (4, 1)}) >>> >>> # setting cell sharding strategy and parameter_plan by tuple(ms.Layout) >>> self.layer_net2 = NetForward() >>> layout = Layout((4, 2, 1), ("dp", "mp", "sp")) >>> in_layout = (layout("dp", "mp"), layout("mp", "sp")) >>> param_layout = layout("dp", "sp") >>> self.layer_net2_shard = ms.shard(self.layer_net2, in_strategy=in_layout, ... parameter_plan={"self.layer_net2.block2.weight": param_layout}) >>> self.flatten = nn.Flatten() >>> self.layer1 = nn.Dense(64, 64) >>> self.layer2 = nn.Dense(64, 32) >>> self.add = ops.Add() >>> self.matmul = ops.MatMul() >>> >>> def construct(self, x, y): >>> x = self.flatten(x) >>> y = self.flatten(y) >>> x = self.layer1(x) >>> x = self.layer_net1_shard(x, y) >>> x = self.layer_net2_shard(x, y) >>> x = self.layer2(x) >>> x = self.matmul(x, Tensor(np.ones(shape=(32, 32)), dtype=ms.float32)) >>> return x >>> >>> net = Net() >>> x = Tensor(np.ones(shape=(64, 1, 8, 8)), dtype=ms.float32) >>> y = Tensor(np.ones(shape=(64, 1, 8, 8)), dtype=ms.float32) >>> net(x, y) >>> >>> # Case 2: function uses functional sharding >>> def test_shard(x, y): ... return x + y >>> x = Tensor(np.ones(shape=(32, 10)), dtype=ms.float32) >>> y = Tensor(np.ones(shape=(32, 10)), dtype=ms.float32) >>> output = ms.shard(test_shard, in_strategy=((4, 2), (4, 2)))(x, y) >>> print(output.shape) (32, 10) Tutorial Examples: - `Functional Operator Sharding <https://www.mindspore.cn/docs/en/r2.4.10/model_train/parallel/shard_function_parallel.html>`_ - `mindspore.Layout <https://www.mindspore.cn/docs/en/r2.4.10/api_python/mindspore/mindspore.Layout.html>`_ """ if not isinstance(fn, (ms.nn.Cell)): logger.warning("'fn' is not a mindspore.nn.Cell, and its definition cannot involve Parameter; " "otherwise, the result may be incorrect.") return Shard()(fn, in_strategy, out_strategy, parameter_plan, device, level)