文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.NPUGetFloatStatus

class mindspore.ops.NPUGetFloatStatus[源代码]

在执行 mindspore.ops.NPUAllocFloatStatus 后, NPUGetFloatStatus 获取最新溢出状态并更新标识。

说明

标志是一个Tensor,其shape为 (8,) ,数据类型为 mindspore.dtype.float32 。如果标志的和等于0,则没有发生溢出。如果标志之和大于0,则发生溢出。此外,使用有严格的顺序要求,即在使用 NPUGetFloatStatus 算子之前,需要确保 mindspore.ops.NPUClearFloatStatus 和需执行的计算已执行。使用 mindspore.ops.Depend 确保执行顺序。

输入:
  • x (Tensor) - mindspore.ops.NPUAllocFloatStatus 的输出Tensor。数据类型必须为float16或float32。 (N,) ,其中 表示任意附加维度,其rank应小于8。

输出:

Tensor,shape与 x 相同。Tensor中的所有元素都将为零。

异常:
  • TypeError - 如果 x 不是Tensor。

  • TypeError - 如果 x 的数据类型既不是float16也不是float32。

支持平台:

Ascend

样例:

>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import ops
>>> from mindspore import dtype as mstype
>>> from mindspore import Tensor
>>> class Net(nn.Cell):
...     def __init__(self):
...         super().__init__()
...         self.alloc_status = ops.NPUAllocFloatStatus()
...         self.get_status = ops.NPUGetFloatStatus()
...         self.clear_status = ops.NPUClearFloatStatus()
...         self.sub = ops.Sub()
...         self.neg = ops.Neg()
...
...     def construct(self, x):
...         init = self.alloc_status()
...         clear_status = self.clear_status(init)
...         x = ops.depend(x, clear_status)
...         res = self.sub(x, self.neg(x))
...         init = ops.depend(init, res)
...         get_status = self.get_status(init)
...         res = ops.depend(res, get_status)
...         return res
>>>
>>> value = 5
>>> data = np.full((2, 3), value, dtype=np.float16)
>>> x = Tensor(data, dtype=mstype.float16)
>>> net = Net()
>>> res = net(x)
>>> print(res)
[[10. 10. 10.]
 [10. 10. 10.]]