mindspore.dataset.callback.ds_callback 源代码

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python callback class."""
from __future__ import absolute_import

import threading

from mindspore._c_dataengine import PyDSCallback
from mindspore.train.callback import Callback
import mindspore.dataset as ds
from mindspore.dataset.callback.validators import check_callback


[文档]class DSCallback: """ Abstract base class used to build dataset callback classes. Users can obtain the dataset pipeline context through `ds_run_context` , including `cur_epoch_num` , `cur_step_num_in_epoch` and `cur_step_num` . Args: step_size (int, optional): The number of steps between adjacent `ds_step_begin`/`ds_step_end` calls. Default: ``1``, will be called at each step. Examples: >>> import mindspore.dataset as ds >>> from mindspore.dataset import DSCallback >>> >>> class PrintInfo(DSCallback): ... def ds_begin(self, ds_run_context): ... print("callback: start dataset pipeline", flush=True) ... ... def ds_epoch_begin(self, ds_run_context): ... print("callback: epoch begin, we are in epoch", ds_run_context.cur_epoch_num, flush=True) ... ... def ds_epoch_end(self, ds_run_context): ... print("callback: epoch end, we are in epoch", ds_run_context.cur_epoch_num, flush=True) ... ... def ds_step_begin(self, ds_run_context): ... print("callback: step begin, step", ds_run_context.cur_step_num_in_epoch, flush=True) ... ... def ds_step_end(self, ds_run_context): ... print("callback: step end, step", ds_run_context.cur_step_num_in_epoch, flush=True) >>> >>> dataset = ds.GeneratorDataset([1, 2], "col1", shuffle=False, num_parallel_workers=1) >>> dataset = dataset.map(operations=lambda x: x, callbacks=PrintInfo()) >>> >>> # Start dataset pipeline >>> iterator = dataset.create_tuple_iterator(num_epochs=2) >>> for i in range(2): ... for d in iterator: ... pass callback: start dataset pipeline callback: epoch begin, we are in epoch 1 callback: step begin, step 1 callback: step begin, step 2 callback: step end, step 1 callback: step end, step 2 callback: epoch end, we are in epoch 1 callback: epoch begin, we are in epoch 2 callback: step begin, step 1 callback: step begin, step 2 callback: step end, step 1 callback: step end, step 2 callback: epoch end, we are in epoch 2 """ @check_callback def __init__(self, step_size=1): self.step_size = step_size
[文档] def ds_begin(self, ds_run_context): """ Called before the data pipeline is started. Args: ds_run_context (RunContext): Include some information of the data pipeline. """
[文档] def ds_epoch_begin(self, ds_run_context): """ Called before a new epoch is started. Args: ds_run_context (RunContext): Include some information of the data pipeline. """
[文档] def ds_epoch_end(self, ds_run_context): """ Called after an epoch is finished. Args: ds_run_context (RunContext): Include some information of the data pipeline. """
[文档] def ds_step_begin(self, ds_run_context): """ Called before a step start. Args: ds_run_context (RunContext): Include some information of the data pipeline. """
[文档] def ds_step_end(self, ds_run_context): """ Called after a step finished. Args: ds_run_context (RunContext): Include some information of the data pipeline. """
def create_runtime_obj(self): """ Internal method, creates a runtime (C++) object from the callback methods defined by the user. Returns: _c_dataengine.PyDSCallback. """ c_cb = PyDSCallback(self.step_size) at_least_one = False if self.__class__.ds_begin != DSCallback.ds_begin: c_cb.set_begin(self.ds_begin) at_least_one = True if self.__class__.ds_epoch_begin != DSCallback.ds_epoch_begin: c_cb.set_epoch_begin(self.ds_epoch_begin) at_least_one = True if self.__class__.ds_epoch_end != DSCallback.ds_epoch_end: c_cb.set_epoch_end(self.ds_epoch_end) at_least_one = True if self.__class__.ds_step_begin != DSCallback.ds_step_begin: c_cb.set_step_begin(self.ds_step_begin) at_least_one = True if self.__class__.ds_step_end != DSCallback.ds_step_end: c_cb.set_step_end(self.ds_step_end) at_least_one = True if not at_least_one: raise AttributeError( "Inheriting Callback class without overriding any methods, check the usage of user defined Callback.") return c_cb
[文档]class WaitedDSCallback(Callback, DSCallback): r""" Abstract base class used to build dataset callback classes that are synchronized with the training callback class `mindspore.train.Callback \ <https://www.mindspore.cn/docs/en/r2.4.1/api_python/train/ mindspore.train.Callback.html#mindspore.train.Callback>`_ . It can be used to execute a custom callback method before a step or an epoch, such as updating the parameters of operations according to the loss of the previous training epoch in auto augmentation. Users can obtain the network training context through `train_run_context` , such as `network` , `train_network` , `epoch_num` , `batch_num` , `loss_fn` , `optimizer` , `parallel_mode` , `device_number` , `list_callback` , `cur_epoch_num` , `cur_step_num` , `dataset_sink_mode` , `net_outputs` , etc., see `mindspore.train.Callback \ <https://www.mindspore.cn/docs/en/r2.4.1/api_python/train/ mindspore.train.Callback.html#mindspore.train.Callback>`_ . Users can obtain the dataset pipeline context through `ds_run_context` , including `cur_epoch_num` , `cur_step_num_in_epoch` and `cur_step_num` . Note: Note that the call is triggered only at the beginning of the second step or epoch. Args: step_size (int, optional): The number of rows in each step, usually set equal to the batch size. Default: ``1``. Examples: >>> import mindspore as ms >>> import mindspore.dataset as ds >>> import mindspore.nn as nn >>> from mindspore.dataset import WaitedDSCallback >>> >>> ms.set_context(mode=ms.GRAPH_MODE, device_target="CPU") >>> >>> # custom callback class for data synchronization in data pipeline >>> class MyWaitedCallback(WaitedDSCallback): ... def __init__(self, events, step_size=1): ... super().__init__(step_size) ... self.events = events ... ... # callback method to be executed by data pipeline before the epoch starts ... def sync_epoch_begin(self, train_run_context, ds_run_context): ... event = f"ds_epoch_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}" ... self.events.append(event) ... ... # callback method to be executed by data pipeline before the step starts ... def sync_step_begin(self, train_run_context, ds_run_context): ... event = f"ds_step_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}" ... self.events.append(event) >>> >>> # custom callback class for data synchronization in network training >>> class MyMSCallback(ms.Callback): ... def __init__(self, events): ... self.events = events ... ... # callback method to be executed by network training after the epoch ends ... def epoch_end(self, run_context): ... cb_params = run_context.original_args() ... event = f"ms_epoch_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}" ... self.events.append(event) ... ... # callback method to be executed by network training after the step ends ... def step_end(self, run_context): ... cb_params = run_context.original_args() ... event = f"ms_step_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}" ... self.events.append(event) >>> >>> # custom network >>> class Net(nn.Cell): ... def construct(self, x, y): ... return x >>> >>> # define a parameter that needs to be synchronized between data pipeline and network training >>> events = [] >>> >>> # define callback classes of data pipeline and netwok training >>> my_cb1 = MyWaitedCallback(events, 1) >>> my_cb2 = MyMSCallback(events) >>> arr = [1, 2, 3, 4] >>> >>> # construct data pipeline >>> data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False) >>> # map the data callback object into the pipeline >>> data = data.map(operations=(lambda x: x), callbacks=my_cb1) >>> >>> net = Net() >>> model = ms.train.Model(net) >>> >>> # add the data and network callback objects to the model training callback list >>> model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1]) """ def __init__(self, step_size=1): super().__init__() self.step_size = step_size self.step_event = threading.Event() self.step_run_context = None self.epoch_event = threading.Event() self.epoch_run_context = None self.training_ended = False
[文档] def sync_epoch_begin(self, train_run_context, ds_run_context): """ Called before a new dataset epoch is started and after the previous training epoch is ended. Args: train_run_context: Include some information of the model with feedback from the previous epoch. ds_run_context: Include some information of the data pipeline. """
[文档] def sync_step_begin(self, train_run_context, ds_run_context): """ Called before a new dataset step is started and after the previous training step is ended. Args: train_run_context: Include some information of the model with feedback from the previous step. ds_run_context: Include some information of the data pipeline. """
def epoch_end(self, run_context): """ Internal method, do not call/override. Defines epoch_end of Callback to release the wait in ds_epoch_begin. Args: run_context: Include some information of the model. """ self.epoch_run_context = run_context self.epoch_event.set() def ds_epoch_begin(self, ds_run_context): """ Internal method, do not call/override. Define mindspore.dataset.DSCallback.ds_epoch_begin to wait for mindspore.train.callback.Callback.epoch_end. Args: ds_run_context: Include some information of the data pipeline. """ if ds_run_context.cur_epoch_num > 1: if not self.training_ended: success = self.epoch_event.wait(timeout=ds.config.get_callback_timeout()) self.epoch_event.clear() if not success: raise RuntimeError(f"ds_epoch_begin timed out after {ds.config.get_callback_timeout()} second(s).") # by the time this thread wakes up, self.epoch_run_context is already available self.sync_epoch_begin(self.epoch_run_context, ds_run_context) def step_end(self, run_context): """ Internal method, do not call/override. Defines step_end of Callback to release the wait in ds_step_begin. Args: run_context: Include some information of the model. """ self.step_run_context = run_context self.step_event.set() def ds_step_begin(self, ds_run_context): """ Internal method, do not call/override. Define mindspore.dataset.DSCallback.ds_step_begin to wait for mindspore.train.callback.Callback.step_end. Args: ds_run_context: Include some information of the data pipeline. """ if ds_run_context.cur_step_num > self.step_size: if not self.training_ended: success = self.step_event.wait(timeout=ds.config.get_callback_timeout()) self.step_event.clear() if not success: raise RuntimeError(f"ds_step_begin timed out after {ds.config.get_callback_timeout()} second(s).") # by the time this thread wakes up, self.epoch_run_context is already available self.sync_step_begin(self.step_run_context, ds_run_context) def create_runtime_obj(self): """ Internal method, creates a runtime (C++) object from the callback methods defined by the user. Returns: _c_dataengine.PyDSCallback. """ c_cb = PyDSCallback(self.step_size) at_least_one = False if self.__class__.sync_step_begin != WaitedDSCallback.sync_step_begin: c_cb.set_step_begin(self.ds_step_begin) at_least_one = True if self.__class__.sync_epoch_begin != WaitedDSCallback.sync_epoch_begin: c_cb.set_epoch_begin(self.ds_epoch_begin) at_least_one = True if not at_least_one: raise AttributeError( "Inheriting Callback class without overriding any methods, check the usage of user defined Callback.") return c_cb def end(self, run_context): """ Internal method, release wait when the network training ends. Args: run_context: Include some information of the model. """ self.epoch_end(run_context) self.step_end(run_context) self.training_ended = True