mindspore.common.sparse_tensor 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SparseTensor implementation."""
from __future__ import absolute_import, annotations

__all__ = ['RowTensorInner', 'RowTensor', 'SparseTensor', 'COOTensor', 'CSRTensor']

from typing import Tuple, Union

from mindspore import log as logger
from mindspore.common import dtype as mstype
from mindspore.common._register_for_tensor import tensor_operator_registry
from mindspore.common.tensor import Tensor
from mindspore._c_expression import COOTensor as COOTensor_
from mindspore._c_expression import CSRTensor as CSRTensor_
from mindspore._c_expression import RowTensor as RowTensor_
from mindspore._c_expression import Tensor as Tensor_
from mindspore import _checkparam as validator
from mindspore._checkparam import is_stub_tensor


class RowTensorInner(RowTensor_):
    """
    Implementation for RowTensor, for MindSpore developers only.
    """

    def __init__(self, indices=None, values=None, shape=None, row_tensor=None):
        """Init RowTensor"""
        self.init_finished = False
        # Directly init a RowTensor from another RowTensor
        if row_tensor is not None:
            if not isinstance(row_tensor, (RowTensor, RowTensor_)):
                raise TypeError(f"Expect input `row_tensor` to be a RowTensor, but got {type(row_tensor)}")
            if not (indices is None and values is None and shape is None):
                raise TypeError("If input `row_tensor` is provided, `indices`, `values`, `shapes` should all be `None`")
            RowTensor_.__init__(self, row_tensor)
        # Init a RowTensor from indices, values and shape
        else:
            if is_stub_tensor(values):
                values = values.stub_sync()
            RowTensor_.__init__(self, indices, values, shape)
        self.init_finished = True

    def __repr__(self):
        """Avoid PyTest Segfault when RowTensor is not initialized."""
        if self.init_finished:
            return RowTensor_.__repr__(self)
        return ''

    @property
    def indices(self):
        """Return RowTensor's indices."""
        return Tensor(self._indices)

    @property
    def values(self):
        """Return RowTensor's non-zero values."""
        return Tensor(self._values)

    @property
    def dense_shape(self):
        """Return RowTensor's shape."""
        return self._shape


[文档]class RowTensor(RowTensorInner): """ A sparse representation of a set of tensor slices at given indices. When the `values` of a RowTensor has a shape of :math:`(d_0, d_1, ..., d_n)`, then this RowTensor is used to represent a subset of a larger dense tensor of shape :math:`(l_0, d_1, ..., d_n)`, where :math:`d_i` is the size of i-th axis in RowTensor, :math:`l_0` is the size of 0-th axis of dense tensor and it satisfies :math:`l_0 > d_0`. The parameter `indices` is used to specify locations from which the `RowTensor` is sliced in the first dimension of the dense tensor, which means the parameters `indices` and `values` have the following relationship :math:`dense[indices[i], :, :, :, ...] = values[i, :, :, :, ...]`. For example, if indices is [0], values is [[1, 2]], shape is :math:`(3, 2)` , then the dense representation of the row tensor will be: .. code-block:: [[1, 2], [0, 0], [0, 0]] .. warning:: - This is an experimental API that is subjected to change or deletion. - If use PyNative mode, set "export MS_PYNATIVE_CONFIG_STATIC_SHAPE=1". Args: indices (Tensor): A 1-D integer Tensor of shape :math:`(d_0)` . Default: ``None``. values (Tensor): A Tensor of any dtype of shape :math:`(d_0, d_1, ..., d_n)` . Default: ``None``. shape (tuple(int)): An integer tuple which contains the shape of the corresponding dense tensor. Default: ``None``. row_tensor (RowTensor): A RowTensor object. Default: ``None``. Returns: RowTensor, composed of `indices`, `values`, and `shape`. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, RowTensor >>> indices = Tensor([0]) >>> values = Tensor([[1, 2]], dtype=ms.float32) >>> shape = (3, 2) >>> x = RowTensor(indices, values, shape) >>> print(x.values) [[1. 2.]] >>> print(x.indices) [0] >>> print(x.dense_shape) (3, 2) """ def __init__(self, indices=None, values=None, shape=None, row_tensor=None): """Init RowTensor""" logger.warning("'RowTensor' is deprecated from version 1.7 and will be removed in a future version.") super().__init__(indices, values, shape, row_tensor)
[文档]class SparseTensor(COOTensor_): """ A sparse representation of a set of nonzero elements from a tensor at given indices. SparseTensor can only be used in the `Cell`'s construct method. For a tensor dense, its SparseTensor(indices, values, dense_shape) has `dense[indices[i]] = values[i]`. For example, if indices is [[0, 1], [1, 2]], values is [1, 2], dense_shape is (3, 4), then the dense representation of the sparse tensor will be: .. code-block:: [[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]] Note: The interface is deprecated from version 1.7 and will be removed in a future version. Please use :class:`mindspore.COOTensor` instead. Args: indices (Tensor): A 2-D integer Tensor of shape :math:`(N, ndims)`, where N and ndims are the number of `values` and number of dimensions in the SparseTensor, respectively. values (Tensor): A 1-D tensor of any type and shape :math:`(N)`, which supplies the values for each element in `indices`. shape (tuple(int)): An integer tuple of size :math:`(ndims)`, which specifies the shape of the sparse tensor. Returns: SparseTensor, composed of `indices`, `values`, and `shape`. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, SparseTensor >>> indices = Tensor([[0, 1], [1, 2]]) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (3, 4) >>> x = SparseTensor(indices, values, shape) >>> print(x.values) [1. 2.] >>> print(x.indices) [[0 1] [1 2]] >>> print(x.shape) (3, 4) """ def __init__(self, indices, values, shape): """Init COOTensor.""" logger.warning("'SparseTensor' is deprecated from version 1.7 and will be removed in a future version. " + "Please use 'COOTensor' instead.") if not (isinstance(indices, Tensor) and isinstance(values, Tensor) and isinstance(shape, tuple)): raise TypeError("Inputs must follow: COOTensor(indices, values, shape).") if is_stub_tensor(indices): indices = indices.stub_sync() if is_stub_tensor(values): values = values.stub_sync() COOTensor_.__init__(self, indices, values, shape) @property def indices(self): """Return SparseTensor's indices.""" return Tensor(self._indices) @property def values(self): """Return SparseTensor's non-zero values.""" return Tensor(self._values) @property def shape(self): """Return SparseTensor's shape.""" return self._shape
[文档]class COOTensor(COOTensor_): """ A sparse representation of a set of nonzero elements from a tensor at given indices. For a tensor dense, its COOTensor(indices, values, shape) has `dense[indices[i]] = values[i]`. For example, if indices is [[0, 1], [1, 2]], values is [1, 2], shape is (3, 4), then the dense representation of the sparse tensor will be: .. code-block:: [[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]] Common arithmetic operations include: addition (+), subtraction (-), multiplication (*), and division (/). For details about operations supported by `COOTensor`, see `operators <https://www.mindspore.cn/docs/en/r2.4.1/model_train/program_form/static_graph.html#operators>`_. .. warning:: - This is an experimental API that is subject to change or deletion. - If use PyNative mode, set "export MS_PYNATIVE_CONFIG_STATIC_SHAPE=1". - Currently, duplicate coordinates in the indices will not be coalesced. If the indices contain out-of-bound values, the result will be undefined. Args: indices (Tensor): A 2-D integer Tensor of shape :math:`(N, ndims)`, where N and ndims are the number of `values` and number of dimensions in the COOTensor, respectively. Currently, `ndims` must be 2. Default: ``None`` . Please make sure that the indices are in range of the given shape. values (Tensor): A 1-D tensor of any type and shape :math:`(N)`, which supplies the values for each element in `indices`. Default: ``None`` . shape (tuple(int)): An integer tuple of shape :math:`(ndims)`, which specifies the dense_shape of the sparse tensor. Default: ``None`` . coo_tensor (COOTensor): A COOTensor object. Default: ``None`` . Returns: COOTensor, composed of `indices`, `values`, and `shape`. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> print(x.values) [1. 2.] >>> print(x.indices) [[0 1] [1 2]] >>> print(x.shape) (3, 4) """ def __init__(self, indices=None, values=None, shape=None, coo_tensor=None): """Init COOTensor""" self.init_finished = False # Directly init a COOTensor from another COOTensor if coo_tensor is not None: if not isinstance(coo_tensor, (COOTensor, COOTensor_)): raise TypeError(f"Expect input `coo_tensor` to be a COOTensor, but got {type(coo_tensor)}") if not (indices is None and values is None and shape is None): raise TypeError("If input `coo_tensor` is provided, `indices`, `values`, `shapes` should all be `None`") COOTensor_.__init__(self, coo_tensor) # Init a COOTensor from indices, values and shape else: validator.check_coo_tensor_input(indices, values, shape) validator.check_coo_tensor_shape(indices.shape, values.shape, shape) validator.check_coo_tensor_dtype(indices.dtype) indices = tensor_operator_registry.get('stop_gradient')(indices) if is_stub_tensor(indices): indices = indices.stub_sync() if is_stub_tensor(values): values = values.stub_sync() COOTensor_.__init__(self, indices, values, shape) self.init_finished = True def __repr__(self): """Avoid PyTest Segfault when COOTensor is not initialized.""" if self.init_finished: return COOTensor_.__repr__(self) return '' def __neg__(self): return COOTensor(self.indices, -self.values, self.shape) def __add__(self, other): if not self.shape == other.shape: raise ValueError("Input tensors should have the same shape.") if isinstance(other, Tensor): return tensor_operator_registry.get("tensor_scatter_add")(other, self.indices, self.values) if isinstance(other, COOTensor): return tensor_operator_registry.get('coo_add')(self, other, Tensor(0, self.values.dtype)) raise TypeError("COOTensor add with %s is not supported." % type(other)) def __sub__(self, other): if not self.shape == other.shape: raise ValueError("Input tensors should have the same shape.") if isinstance(other, Tensor): return tensor_operator_registry.get("tensor_scatter_add")(-other, self.indices, self.values) if isinstance(other, COOTensor): return tensor_operator_registry.get('coo_add')( self, -other, Tensor(0, self.values.dtype)) raise TypeError("COOTensor subtract with %s is not supported." % type(other)) def __mul__(self, other): if not self.shape == other.shape: raise ValueError("Input tensors should have the same shape.") if isinstance(other, Tensor): other_values = tensor_operator_registry.get("gather_nd")(other, self.indices) return COOTensor(self.indices, self.values * other_values, self.shape) raise TypeError("COOTensor multiply with %s is not supported." % type(other)) def __div__(self, other): if not self.shape == other.shape: raise ValueError("Input tensors should have the same shape.") if isinstance(other, Tensor): logger.warning("For sparse divide, zero values in the dense tensor are ignored.") other_values = tensor_operator_registry.get("gather_nd")(other, self.indices) return COOTensor(self.indices, self.values / other_values, self.shape) raise TypeError("COOTensor divide with %s is not supported." % type(other)) def __truediv__(self, other): return self.__div__(other) @property def indices(self) -> Tensor: """Return COOTensor's indices.""" return Tensor(self._indices) @property def values(self) -> Tensor: """Return COOTensor's non-zero values.""" return Tensor(self._values) @property def shape(self) -> Tuple[int, ...]: """Return COOTensor's shape.""" return self._shape @property def dtype(self) -> mstype: """ Return the dtype of the values of COOTensor (:class:`mindspore.dtype`). Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (3, 4) >>> coo_tensor = COOTensor(indices, values, shape) >>> print(coo_tensor.dtype) Float32 """ return self._dtype @property def size(self) -> int: """ Return the number of non-zero values. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1, 2], [1, 0, 2]], dtype=ms.int32) >>> values = Tensor([1, 5, 4], dtype=ms.float32) >>> shape = (3, 3) >>> coo_tensor = COOTensor(indices.transpose(), values, shape) >>> print(coo_tensor.size) 3 """ return self.values.size @property def itemsize(self) -> int: """ Return the length of one tensor element in bytes. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float64) >>> shape = (3, 4) >>> coo_tensor = COOTensor(indices, values, shape) >>> print(coo_tensor.itemsize) 8 """ return self.values.itemsize @property def ndim(self) -> int: """ Return the number of tensor dimensions. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> coo_tensor = COOTensor(indices, values, (3, 4)) >>> print(coo_tensor.ndim) 2 """ return len(self.shape)
[文档] def coalesce(self) -> COOTensor: """ Returns a coalesced copy of an uncoalesced sparse tensor. Returns: A COOTensor. Supported Platforms: ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> x_indices = Tensor([[0, 0, 1], [1, 1, 2]], dtype=ms.int64) >>> x_values = Tensor([1, 5, 4], dtype=ms.float32) >>> x_shape = (3, 3) >>> coo_tensor = COOTensor(x_indices.transpose(), x_values, x_shape) >>> res = coo_tensor.coalesce() >>> print(res) COOTensor(shape=[3, 3], dtype=Float32, indices=Tensor(shape=[2, 2], dtype=Int64, value=[[0 1] [1 2]]), values=Tensor(shape=[2], dtype=Float32, value=[6.00000000e+00 4.00000000e+00])) """ shape = Tensor(self.shape) res_indices, res_values, _ = tensor_operator_registry.get("coalesce")(self.indices.transpose(), self.values, shape) return COOTensor(res_indices.transpose(), res_values, self.shape)
[文档] def to_csr(self) -> CSRTensor: """ Converts COOTensor to CSRTensor. Note: Currently only supports CPU backend with LLVM 12.0.1 installed. Returns: CSRTensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.int32) >>> shape = (3, 4) >>> coo_tensor = COOTensor(indices, values, shape) >>> print(coo_tensor.to_csr()) CSRTensor(shape=[3, 4], dtype=Int32, indptr=Tensor(shape=[4], dtype=Int32, value=[0 1 2 2]), indices=Tensor(shape=[2], dtype=Int32, value=[1 2]), values=Tensor(shape=[2], dtype=Int32, value=[1 2])) """ row_indices = self.indices[:, 0] col_indices = self.indices[:, 1] idx_dtype = self.indices.dtype row_indices, sort_idx = tensor_operator_registry.get("sort")( row_indices.astype(mstype.float32)) row_indices = row_indices.astype(idx_dtype) col_indices = col_indices[sort_idx] values = self.values[sort_idx] indptr = tensor_operator_registry.get("coo2csr")(row_indices, self.shape[0]) return CSRTensor(indptr, col_indices, values, self.shape)
[文档] def to_dense(self) -> Tensor: """ Converts COOTensor to Dense Tensor. Returns: Tensor. Supported Platforms: ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1, 2], [1, 0, 2]], dtype=ms.int32) >>> values = Tensor([1, 5, 4], dtype=ms.float32) >>> shape = (3, 3) >>> coo_tensor = COOTensor(indices.transpose(), values, shape) >>> print(coo_tensor.to_dense()) [[0. 1. 0.] [5. 0. 0.] [0. 0. 4.]] """ zeros_tensor = tensor_operator_registry.get("zeros")(self.shape, self.values.dtype) return tensor_operator_registry.get("tensor_scatter_add")( zeros_tensor, self.indices, self.values)
[文档] def astype(self, dtype: mstype) -> COOTensor: """ Return a copy of the COOTensor, cast its values to a specified type. Args: dtype (Union[:class:`mindspore.dtype`, numpy.dtype, str]): Designated tensor dtype. Returns: COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (3, 4) >>> coo_tensor = COOTensor(indices, values, shape) >>> print(coo_tensor.astype(ms.float64).dtype) Float64 """ data = self.values.astype(dtype) return COOTensor(self.indices, data, self.shape)
[文档] def to_tuple(self) -> Tuple[Tensor, Tensor, Tuple[int, ...]]: """ Return indices, values and shape as a tuple. Returns: Tuple. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (3, 4) >>> coo_tensor = COOTensor(indices, values, shape) >>> print(coo_tensor.to_tuple()) (Tensor(shape=[2, 2], dtype=Int32, value= [[0, 1], [1, 2]]), Tensor(shape=[2], dtype=Float32, value= [ 1.00000000e+00, 2.00000000e+00]), (3, 4)) """ return self.indices, self.values, self.shape
[文档] def abs(self) -> COOTensor: """ Return absolute value element-wisely. Returns: COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, COOTensor >>> indices = Tensor([[0, 1, 2], [1, 0, 2]], dtype=ms.int32) >>> values = Tensor([1, -5, -4], dtype=ms.float32) >>> shape = (3, 3) >>> coo_tensor = COOTensor(indices.transpose(), values, shape) >>> res = coo_tensor.abs() >>> print(res.values) [1. 5. 4.] """ data = self.values.abs() return COOTensor(self.indices, data, self.shape)
[文档] def add(self, other: COOTensor, thresh: Tensor) -> COOTensor: """ Return the sum with another COOTensor. Args: other(COOTensor): the second SparseTensor to sum. thresh(Tensor): A 0-D Tensor, represents the magnitude threshold that determines if an output value/index pair take space, Its dtype should match that of the values if they are real. If output's value is less than the `thresh`, it will vanish. Returns: COOTensor, representing the sum. Raises: ValueError: If any input(self/other)'s indices's dim is not equal to 2. ValueError: If any input(self/other)'s values's dim is not equal to 1. ValueError: If any input(self/other)'s shape's dim is not equal to 1. ValueError: If thresh's dim is not equal to 0. TypeError: If any input(self/other)'s indices's type is not equal to int64. TypeError: If any input(self/other)'s shape's type is not equal to int64. ValueError: If any input(self/other)'s indices's length is not equal to its values's length. TypeError: If any input(self/other)'s values's type is not equal to anf of (int8/int16/int32/int64/float32/float64/complex64/complex128) TypeError: If thresh's type is not equal to anf of (int8/int16/int32/int64/float32/float64) TypeError: If self's indices's type is not equal to other's indices's type TypeError: If self's values's type is not equal to other's values's type TypeError: If self's shape's type is not equal to other's shape's type TypeError: If (self/other)'s value's type is not matched with thresh's type Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, COOTensor >>> from mindspore import dtype as mstype >>> indics0 = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values0 = Tensor([1, 2], dtype=mstype.int32) >>> shape0 = (3, 4) >>> input0 = COOTensor(indics0, values0, shape0) >>> indics1 = Tensor([[0, 0], [1, 1]], dtype=mstype.int64) >>> values1 = Tensor([3, 4], dtype=mstype.int32) >>> shape1 = (3, 4) >>> input1 = COOTensor(indics1, values1, shape1) >>> thres = Tensor(0, dtype=mstype.int32) >>> out = input0.add(input1, thres) >>> print(out) COOTensor(shape=[3, 4], dtype=Int32, indices=Tensor(shape=[4, 2], dtype=Int64, value= [[0 0] [0 1] [1 1] [1 2]]), values=Tensor(shape=[4], dtype=Int32, value=[3 1 4 2])) """ return tensor_operator_registry.get('coo_add')(self, other, thresh)
[文档]class CSRTensor(CSRTensor_): r""" Constructs a sparse tensor in CSR (Compressed Sparse Row) format, with specified values indicated by `values` and row and column positions indicated by `indptr` and `indices`. For example, if indptr is [0, 2, 5, 6], indices is [0, 3, 1, 2, 4, 2], values is [1., 2., 3., 4., 5., 6.], shape is (3, 5), then the dense representation of the sparse tensor will be: .. code-block:: [[1., 0., 0., 2., 0.], [0., 3., 4., 0., 5.], [0., 0., 6., 0., 0.]] The length of `indptr` should equal to `shape[0]+1`, where the elements should be equal or monotonically increasing and the maximum value should be equal to the number of non-zero values in the tensor. The length of `indices` and `values` should be equal to the number of non-zero values in the tensor. To be concrete, get the query indices of none-zero elements in every line according to `indptr`. Then get the column positions of none-zero elements in every line by looking up query indices in `indices`. Finally, get the actual values of none-zero elements in every line by looking up query indices in `values`. In the former example, 'indptr' of [0, 2, 5, 6] represents that the indices of 0th row of the tensor origins from [0, 2), the indices of the 1st row of the tensor origins from [2, 5) and the 2nd row of the tensor origins from [5, 6). For example, the column positions of the non-zero elements of the 0th row in the tensor are provided by the [0, 2) elements in `indices` (i.e. [0, 3]) and the corresponding values are provided by the [0, 2) elements in `values` (i.e. [1., 2.]). The column positions of the non-zero elements of the 1st row in the tensor are provided by the [2, 5) elements in `indices` (i.e. [1, 2, 4]) and the corresponding values are provided by the [2, 5) elements in `values` (i.e. [3., 4., 5.]). The column positions of the non-zero elements of the 2nd row in the tensor are provided by the [5, 6) elements in `indices` (i.e. [2]) and the corresponding values are provided by the [5, 6) elements in `values` (i.e. [6.]). Common arithmetic operations include: addition (+), subtraction (-), multiplication (*), and division (/). For details about operations supported by `CSRTensor`, see `operators <https://www.mindspore.cn/docs/en/r2.4.1/model_train/program_form/static_graph.html#operators>`_. .. warning:: - This is an experimental API that is subjected to change. - If use PyNative mode, set "export MS_PYNATIVE_CONFIG_STATIC_SHAPE=1". - If the values given by `indptr` or `indices` are invalid, the results may be undefined. Invalid values include when the length of `values` or `indices` exceeds the range indicated by `indptr`, and when the columns indicated by `indices` are repeated on the same row. Args: indptr (Tensor): 1-D Tensor of shape :math:`(M)`, which equals to `shape[0] + 1`, which indicates the start and end point for `values` in each row. Default: ``None``. If provided, must be int16, int32 or int64. indices (Tensor): 1-D Tensor of shape :math:`(N)`, which has the same length as `values`. `indices` indicates the which column `values` should be placed. Default: ``None``. If provided, must be int16, int32 or int64. values (Tensor): Tensor, which has the same length as `indices` (values.shape[0] == indices.shape[0]). `values` stores the data for CSRTensor. Default: ``None``. shape (tuple(int)): An integer tuple of shape :math:`(ndims)`, and `shape[0]` must equal to `M - 1`, which all equal to number of rows of the CSRTensor. Default: ``None``. csr_tensor (CSRTensor): A CSRTensor object. Values' feature dimension should match with CSRTensor's feature dimension :math:`(values.shape[1:] == csr\_tensor.shape[2:])` . Default: ``None``. Outputs: CSRTensor, with shape defined by `shape`, and dtype inferred from `value`. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> # initialize a csr_tensor with indptr, indices, values and shape >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> # access a data member of CSRTensor >>> print(indptr == csr_tensor.indptr) [ True True True] """ def __init__(self, indptr=None, indices=None, values=None, shape=None, csr_tensor=None): "Init CSRTensor" self.init_finished = False # Directly init a CSRTensor from another CSRTensor if csr_tensor is not None: if not isinstance(csr_tensor, (CSRTensor, CSRTensor_)): raise TypeError(f"Expect input `csr_tensor` to be a CSRTensor, but got {type(csr_tensor)}") if not (indptr is None and indices is None and values is None and shape is None): raise TypeError( "If input `csr_tensor` is provided, `indptr`, `indices`, `values`, `shapes` should all be `None`") CSRTensor_.__init__(self, csr_tensor) # Init a CSRTensor from indptr, indices, values and shape else: validator.check_csr_tensor_input(indptr, indices, values, shape) validator.check_csr_tensor_shape(indptr.shape, indices.shape, values.shape, shape) validator.check_csr_tensor_dtype(indptr.dtype, indices.dtype) indptr = tensor_operator_registry.get('stop_gradient')(indptr) indices = tensor_operator_registry.get('stop_gradient')(indices) if is_stub_tensor(indptr): indptr = indptr.stub_sync() if is_stub_tensor(values): values = values.stub_sync() if is_stub_tensor(indices): indices = indices.stub_sync() CSRTensor_.__init__(self, indptr, indices, values, shape) self.init_finished = True def __repr__(self): """Avoid PyTest Segfault when CSRTensor is not initialized.""" if self.init_finished: return CSRTensor_.__repr__(self) return '' def __mul__(self, other): return tensor_operator_registry.get('csr_mul')(self, other) def __div__(self, other): logger.warning("For CSR divide, zero values in the dense tensor are ignored.") return tensor_operator_registry.get('csr_div')(self, other) def __truediv__(self, other): return self.__div__(other) def __neg__(self): return CSRTensor(self.indptr, self.indices, -self.values, self.shape) def __add__(self, other): if not self.shape == other.shape: raise ValueError("Input tensors should have the same shape.") if isinstance(other, CSRTensor): return tensor_operator_registry.get('csr_add')( self, other, Tensor(1, self.values.dtype), Tensor(1, self.values.dtype)) raise TypeError("CSRTensor add with %s is not supported." % type(other)) def __sub__(self, other): if not self.shape == other.shape: raise ValueError("Input tensors should have the same shape.") if isinstance(other, CSRTensor): return tensor_operator_registry.get('csr_add')( self, other, Tensor(1, self.values.dtype), Tensor(-1, self.values.dtype)) raise TypeError("CSRTensor subtract with %s is not supported." % type(other)) @property def indptr(self) -> Tensor: """Return CSRTensor's row indices pointers.""" return Tensor(self._indptr) @property def indices(self) -> Tensor: """ Return CSRTensor's column indices. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.indices) [0 1] """ return Tensor(self._indices) @property def values(self) -> Tensor: """ Return CSRTensor's non-zero values. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.values) [1. 2.] """ return Tensor(self._values) @property def shape(self) -> Tuple[int, ...]: """ Return CSRTensor's shape. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.shape) (2, 4) """ return self._shape @property def dtype(self) -> mstype: """ Return the dtype of the values of CSRTensor (:class:`mindspore.dtype`). Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.dtype) Float32 """ return self._dtype @property def size(self) -> int: """ Return the number of non-zero values. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.size) 2 """ return self.values.size @property def itemsize(self) -> int: """ Return the length of one tensor element in bytes. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float64) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.itemsize) 8 """ return self.values.itemsize @property def ndim(self) -> int: """ Return the number of tensor dimensions. Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.ndim) 2 """ return len(self.shape)
[文档] def to_tuple(self) -> Tuple[Tensor, Tensor, Tensor, Tuple[int, ...]]: """ Return indptr, indices, values and shape as a tuple. Returns: Tuple. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.to_tuple()) (Tensor(shape=[3], dtype=Int32, value= [0, 1, 2]), Tensor(shape=[2], dtype=Int32, value= [0, 1]), Tensor(shape=[2], dtype=Float32, value= [ 1.00000000e+00, 2.00000000e+00]), (2, 4)) """ return self.indptr, self.indices, self.values, self.shape
[文档] def to_coo(self) -> COOTensor: """ Converts CSRTensor to COOTensor. Note: Currently only supports CPU backend with LLVM 12.0.1 installed. Returns: COOTensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.int32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.to_coo()) COOTensor(shape=[2, 4], dtype=Int32, indices=Tensor(shape=[2, 2], dtype=Int32, value= [[0 0] [1 1]]), values=Tensor(shape=[2], dtype=Int32, value=[1 2])) """ if self.ndim != 2: raise ValueError("Currently only support 2-D CSRTensor when converting to COOTensor.") row_indices = tensor_operator_registry.get("csr2coo")(self.indptr, self.values.shape[0]) coo_indices = tensor_operator_registry.get("stack")((row_indices, self.indices), 1) return COOTensor(coo_indices, self.values, self.shape)
[文档] def to_dense(self) -> Tensor: """ Converts CSRTensor to Dense Tensor. Returns: Tensor. Supported Platforms: ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.to_dense()) [[1. 0. 0. 0.] [0. 2. 0. 0.]] """ return tensor_operator_registry.get("csr_to_dense")(self)
[文档] def astype(self, dtype: mstype) -> CSRTensor: """ Return a copy of the CSRTensor, cast its values to a specified type. Args: dtype (Union[:class:`mindspore.dtype`, numpy.dtype, str]): Designated tensor dtype. Returns: CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.astype(ms.float64).dtype) Float64 """ data = self.values.astype(dtype) return CSRTensor(self.indptr, self.indices, data, self.shape)
[文档] def mv(self, dense_vector: Tensor) -> Tensor: """ Return the matrix multiplication result of the right-multiply dense matrix of the CSRTensor. The CSRTensor with shape `[M, N]` needs to adapt the dense vector with shape `[N, 1]` to get the dense vector with result `[M, 1]`. Note: Currently only supports CPU backend with LLVM 12.0.1 installed. Args: dense_vector (Tensor): A dense Tensor, its shape must be (csr_tensor.shape[1], 1) Returns: Tensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, CSRTensor >>> from mindspore import dtype as mstype >>> indptr = Tensor([0, 1, 2], dtype=mstype.int32) >>> indices = Tensor([0, 1], dtype=mstype.int32) >>> values = Tensor([2, 1], dtype=mstype.float32) >>> dense_shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, dense_shape) >>> dense = Tensor([[1], [1], [1], [1]], dtype=mstype.float32) >>> print(csr_tensor.mv(dense)) [[2.] [1.]] """ validator.check_value_type('dense_vector', dense_vector, (Tensor, Tensor_,), 'CSRTensor.mv') return tensor_operator_registry.get("csr_mv")(self, dense_vector)
[文档] def mm(self, matrix: Union[Tensor, CSRTensor]) -> Union[Tensor, CSRTensor]: """ Return the matrix multiplication result of the right-multiply matrix(dense or CSRTensor) of the CSRTensor. The CSRTensor with shape `[M, N]` needs to adapt the right matrix with shape `[N, K]` to get the dense matrix or CSRTensor with result `[M, K]`. Note: If right matrix is CSRTensor, currently only supports GPU backend. If right matrix is Tensor, currently supports CPU backend with LLVM no lower than 12.0.1, and GPU backend. Args: matrix (Tensor or CSRTensor): A dense Tensor or CSRTensor, its shape[0] should be equal to csr_tensor.shape[1] Returns: Tensor or CSRTensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, CSRTensor >>> from mindspore import dtype as mstype >>> indptr = Tensor([0, 1, 2], dtype=mstype.int32) >>> indices = Tensor([0, 1], dtype=mstype.int32) >>> values = Tensor([2, 1], dtype=mstype.float32) >>> dense_shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, dense_shape) >>> dense_matrix = Tensor([[1., 2.], [1, 2.], [1, 2.], [1., 2.]], dtype=mstype.float32) >>> print(csr_tensor.mm(dense_matrix)) [[2. 4.] [1. 2.]] """ if isinstance(matrix, CSRTensor): return tensor_operator_registry.get("csr_mm")(self, matrix) validator.check_value_type('matrix', matrix, (Tensor, Tensor_,), 'CSRTensor.mm') return tensor_operator_registry.get("csr_mm_akg")()(self.indptr, self.indices, self.values, self.shape, matrix)
[文档] def sum(self, axis: int) -> Tensor: """ Reduces a dimension of a CSRTensor by summing all elements in the dimension. Note: Currently only supports CPU backend with LLVM 12.0.1 installed. Args: axis (int): The dimensions to reduce. Returns: Tensor, the dtype is the same as `CSRTensor.values`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, CSRTensor >>> from mindspore import dtype as mstype >>> indptr = Tensor([0, 1, 2], dtype=mstype.int32) >>> indices = Tensor([0, 1], dtype=mstype.int32) >>> values = Tensor([2, 1], dtype=mstype.float32) >>> dense_shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, dense_shape) >>> print(csr_tensor.sum(1)) [[2.] [1.]] """ return tensor_operator_registry.get("csr_reduce_sum")(self, axis)
[文档] def abs(self) -> CSRTensor: """ Return absolute value element-wisely. Returns: CSRTensor, with all values being non-negative. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, CSRTensor >>> indptr = Tensor([0, 1, 2], dtype=ms.int32) >>> indices = Tensor([0, 1], dtype=ms.int32) >>> values = Tensor([-1, -2], dtype=ms.float32) >>> shape = (2, 4) >>> csr_tensor = CSRTensor(indptr, indices, values, shape) >>> print(csr_tensor.abs().values) [1. 2.] """ data = self.values.abs() return CSRTensor(self.indptr, self.indices, data, self.shape)
[文档] def add(self, b: CSRTensor, alpha: Tensor, beta: Tensor) -> CSRTensor: """ Addition of two CSR Tensors : C = alpha * A + beta * B Args: b (CSRTensor): Sparse CSR Tensor. alpha(Tensor): Dense Tensor, its shape must be able to broadcast to self. beta(Tensor): Dense Tensor, its shape must be able to broadcast to b. Returns: CSRTensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, CSRTensor >>> import mindspore.common.dtype as mstype >>> indptr = Tensor([0, 1, 2], dtype=mstype.int32) >>> indices = Tensor([0, 1], dtype=mstype.int32) >>> values_a = Tensor([2, 1], dtype=mstype.float32) >>> values_b = Tensor([1, 2], dtype=mstype.float32) >>> dense_shape = (2, 4) >>> alpha = Tensor(1, mstype.float32) >>> beta = Tensor(1, mstype.float32) >>> a = CSRTensor(indptr, indices, values_a, dense_shape) >>> b = CSRTensor(indptr, indices, values_b, dense_shape) >>> print(a.add(b, alpha, beta)) CSRTensor(shape=[2, 4], dtype=Float32, indptr=Tensor(shape=[3], dtype=Int32, value=[0 1 2]), indices=Tensor(shape=[2], dtype=Int32, value=[0 1]), values=Tensor(shape=[2], dtype=Float32, value=[ 3.00000000e+00 3.00000000e+00])) """ return tensor_operator_registry.get('csr_add')(self, b, alpha, beta)